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The coupling of large eddy simulation (LES) with statistical turbulence models, i.e. Reynolds-Averaged

Navier–Stokes (RANS) models, is arguably the main strategy to drastically reduce computational

cost for making LES affordable in a wide range of complex industrial applications. The present

paper presents a coherent review of the various approaches proposed in the recent literature on

this topic. First, basic concepts and principal strategies highlighting the underlying ideas are

introduced. This culminates in a general scheme to classify hybrid LES/RANS approaches. Following

the structure of this novel classification, a larger number of individual methods are then described

and assessed. Key methods are discussed in greater detail and illustrated with examples from the

literature or by own results. The aim of the review is to provide information on how to distinguish

different methods and their ingredients and to further the understanding of inherent limitations and

difficulties. On the other hand, successful simulation results demonstrate the high potential of the

hybrid approach.
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1. Introduction

Each simulation of a turbulent flow is performed for a
particular purpose. The minimum goal presumably is to deter-
mine the mean flow with acceptable precision. Further levels are
the computation of higher moments or the determination of
instantaneous unsteady features. Reynolds-averaged Navier–
Stokes (RANS) models provide results for mean quantities with
engineering accuracy at moderate cost for a wide range of flows
[1]. In other situations, dominated by large-scale anisotropic
vortical structures like wakes of bluff bodies, the average
quantities are often less satisfactory when a RANS model is
employed (see the ERCOFTAC/IAHR workshops on refined turbu-
lence modeling [2–5], for example). Then large eddy simulation
(LES) performs generally better and bears less modeling un-
certainties. Furthermore, LES by construction provides unsteady
data that are indispensable in many cases: determination of
unsteady forces, fluid–structure coupling, identification of aero-
dynamic sources of sound, and phase-resolved multiphase flow, to
name but a few issues. Unfortunately, LES is by a factor of 10 to
100 more costly than RANS computations [6]: LES requires a finer
grid, cannot benefit from symmetries of the flow in space, and
provides mean values only by averaging the unsteady flow field
computed with small time step over a long sampling time. Hence,
it seems natural to attempt a combination of both turbulence
modeling approaches and to perform LES only where it is needed
while using RANS in regions where it is reliable and efficient.

An illustration of this line of thought is given by the simulation
of the flow around the so-called Ahmed body in Fig. 1 used in
several of the above benchmarking activities [4,5]. The Reynolds
number in the experiment was Re ¼ 7:68� 105 based on the
height of the body. This is a high value for Re, as it yields very thin
attached boundary layers along the walls in the front part.
Separation is induced by the corners at the rear. Up to an angle of
about 30� of the slant, reattachment occurs at some position on
the slant substantially increasing the drag [8,9]. The flow at and
behind the trailing edge of the body is hence very complex and
cannot reliably be simulated using RANS methods [5]. For this
case, a viable hybrid LES/RANS strategy would consist of a so-
called embedded LES, i.e. an LES zone in an otherwise statistical
model in order to resolve the critical part of the flow.

Another and somewhat different motivation for LES/RANS
coupling stems from wall-bounded flows. Close to walls, the LES
philosophy of resolving the locally most energetic vortical
structures requires to substantially reduce the step size of the
grid since the dominating structures become very small in this
region. Furthermore, when increasing the Reynolds number, the
scaling of the computational effort is similar to that of a DNS in its
dependence on Re just with a smaller constant [10]. That makes
the approach unfeasible for wall-bounded flows at high Re, such
as the flow over a wing [11]. As a remedy, some sort of wall model
can be introduced to bridge the near-wall part of the boundary
layer and to make the scaling of the required number of grid
points independent of Re.

Near-wall models in the form of wall functions relying on the
logarithmic law of the wall have been used since the very first LES
[12,13]. Slightly rephrased, statistical information is used in place
of higher resolution. Since then, this approach has been extended
in different directions. Other scalings and wall laws can be used
[14–16] as well as boundary layer equations in the wall-adjacent
cell [17,18]. Details are given in reviews on LES, such as [19–21]. In
this perspective it is natural to enhance the approach by



ARTICLE IN PRESS

Nomenclature

Abbreviations

ADM approximate deconvolution model
DDES delayed DES
DES detached eddy simulation
DNS direct numerical simulation
FSM flow simulation methodology
IC initial condition
ILES implicit LES
LES large eddy simulation
LNS limited numerical scales
MILES monotonic integrated LES
MSD modeled stress depletion
PANS partially averaged Navier–Stokes
PDE partial differential equation
POD proper orthogonal decomposition
RANS Reynolds-averaged Navier–Stokes
RNG renormalization group
SAS scale-adaptive simulation
SGS subgrid scale
SST shear–stress transport
URANS unsteady RANS
VLES very large eddy simulation
WALE wall-adapted local eddy Viscosity
2G-URANS second-generation URANS
2D, 3D two-, three-dimensional
r.h.s. right-hand side
w.r.t. with respect to

Upper-case Roman

C constant
Cp pressure coefficient
E spectral energy
F model function in SAS
G, GDf

filter kernel
K turbulent kinetic energy
Kt SGS kinetic energy
L, LvK model length-scale in SAS
Ma Mach number
PK turbulence production
Q ¼ ðO2

� S2
Þ=2 vortex identification criterion

Re, ReD, Ret Reynolds number
Rij two-point correlation
S strain-rate magnitude
St Strouhal number
Ui, U mean velocity (component)
Ub bulk velocity
Xr reattachment length

Lower-case Roman

c constant
d wall distance, coefficient in vortex method
f arbitrary function
h hill height

j number of grid-line
k wavenumber
‘ turbulent length-scale
n model constant in FSM
p pressure
r distance, radius
t time
ui, u, v, w velocity components
ut friction velocity ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
htwalli=r

p
Þ

xi, x, y, z Cartesian coordinates
y� interface location

Upper-case Greek

D model length-scale
Df filter width
Dg characteristic step size of grid
Dx, Dy, Dz step size of grid in x, y, z

Dt time step
F

ffiffiffiffi
K
p

L

O vorticity magnitude

Lower-case Greek

a angle, latency factor in LNS
b, b� model coefficients
d characteristic length-scale
e turbulent dissipation rate
et SGS dissipation rate
Z model coefficient
k von Kármán constant
l wavelength
n molecular viscosity
nt eddy viscosity
~n modified eddy viscosity
f arbitrary variable
r density
s model coefficient
t, tij unresolved turbulent stresses
twall wall shear-stress
o e=ðKb�Þ
z model coefficient

Symbols and indices

hfi Reynolds average
~f phase average, modified quantity
f0 fluctuation, first derivative
f00 fluctuation, second derivative
f filtered quantity
G � f convolution of G with f
fþ near-wall scaling
fi, fij vector, tensor components
fint value of f at interface
qf derivative w.r.t f
maxff1;f2; . . .g maximum of f1, f2, etc.
minff1;f2; . . .g minimum of f1, f2, etc.

J. Fröhlich, D. von Terzi / Progress in Aerospace Sciences 44 (2008) 349–377 351
considering a full RANS model in the near-wall region and to
combine it with an LES for computation of the outer flow. This is a
second and slightly different attitude toward LES/RANS coupling.
It constitutes the present high-complexity end of a fairly
continuous scale of wall models for LES of increasing sophistica-
tion. Here, wall functions are not discussed, although they could
also be viewed as a sort of LES/RANS coupling. Instead only near-
wall models are considered that employ a full RANS transport
equation discretized on a three-dimensional grid in the vicinity of
the wall.
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Fig. 1. LES prediction of the complete flow field over a simplified car geometry

(Ahmed body) [7]: The boxed area in the top plot indicates the problematic region

for RANS (see instantaneous flow below) on which an embedded LES would focus.

(a) Mean flow; (b) instantaneous flow.
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For ease of presentation, the pressure variable p is defined as
the pressure divided by the density for the constant-density flows
considered in the following. In Section 2, the basic concepts and
underlying ideas with respect to (w.r.t.) the methodology of
hybrid LES/RANS are recalled and a classification of the different
methods is introduced. This classification is new and original
work exceeding other attempts in the literature w.r.t. consistency
and completeness. Discussions of individual methods are grouped
according to this classification. First unified models are presented.
These are distinguished between blended models and interfaced

models. A certain number of the former type is discussed in
Section 3. Interfaced models are described in Section 4. An
altogether different approach to hybrid LES/RANS is segregated

modeling (Section 5). Some methods, referred to as hybrid
methods in the literature, do not fit into either category, since
they are in fact second generation URANS models (2G-URANS) as
explained below (URANS ¼ unsteady RANS). These are discussed
separately in Section 6. Beyond a mere description, a tentative
assessment of the models is provided based on the information
available so far. It constitutes the authors’ current point of view,
but the subject is still young and for some models only limited
information is available.
1 In a lecture at the Von Kármán Institute, J. Ferziger coined the phrase: ‘‘You

throw dice and you get the Strouhal number.’’
2. Basic concepts

2.1. Unsteady RANS

Models employing the RANS equations are based on a
definition of a mean, denoted h� � �i, which must have certain
properties, such as hhfii ¼ hfi for any quantity f [22,23].
Fluctuations w.r.t. the Reynolds-average are denoted by a prime.
The averaging operation is applied to the Navier–Stokes equations
yielding equations governing the mean motion of the flow. These
equations contain an unclosed term which is replaced by the
RANS model tRANS
ij . Typically, the model coefficients are cali-

brated by means of prototypical flows which are desired to be
captured [24].

There exist several ways to define the operator h. . .i. The
conceptually soundest is the mathematical expectation, but other
definitions can be used for flows with certain properties [23]. For
statistically steady flows, the temporal mean is an appropriate
choice. For flows with slow variation of statistical properties
(slow compared to the characteristic turbulent time-scale) a
finite-time temporal average can be used [24]. For unsteady flows
with some basic frequency, a phase average can be introduced. In
this latter case a triple decomposition

ui ¼ huii þ ~ui þ u0i (1)

for the velocity vector ui was proposed in [25] with ~ui being the
phase average or the average conditioned on some slowly varying
quantity. It has become common to name RANS modeling as
URANS whenever the computed solution is time-dependent. The
approach then is to apply an existing RANS model and to aim at
resolving some of the unsteady features of the flow without
recalibration of model coefficients.

With respect to large-scale unsteadiness (large in space and
time, as opposed to turbulent fluctuations) it is useful to
distinguish between two cases. In many situations the boundary
conditions are unsteady, for example, when the mass flux through
an inlet with turbulent flow conditions changes in time. Such
variation generally is substantially slower than the turbulent
time-scales and, hence, any direct interaction can be neglected.
This constitutes a situation with scale separation. The modeling
assumptions for the RANS models are then valid and, most of all,
unsteadiness of statistical mean values is triggered from the
exterior.

A second case, comprises situations with internal instabilities
of the flow, such as bluff body flows. In the near field, scale
separation usually does not hold: The very largest vortical
structures depend on details of the transition process (influenced
by the thickness of some boundary or shear layer, etc.) and
disintegrate into smaller and smaller structures farther down-
stream. In such a situation, phase averages can be constructed and
the terms in the RANS equations can be properly defined.
However, a substantial amount of interaction between turbulent
fluctuations unresolved by the URANS approach and the resolved
fluctuations occurs which is delicate to handle. It is the second
step, devising a model for this situation, which poses the problem.
An unmodified RANS model is likely to be unsuitable for this task.

A good illustration of these arguments is provided by the flow
around a square cylinder investigated in [26], where URANS with
a Reynolds stress model and a K–e model were performed as well
as full LES. An excerpt of these results is shown in Fig. 2. The grid
was three-dimensional in both cases with a factor of about ten in
the total number of grid points employed. This complies with the
URANS philosophy of resolving only the very largest motions,
hence allowing for a coarser grid compared to LES. The URANS
solution which developed in the simulation is seen to be mostly
two-dimensional. In fact, some URANS computations employ a
two-dimensional discretization right from the start. The URANS
results considered here do not yield the correct Strouhal number
St. This frequency, however, is a very insensitive quantity for most
bluff body flows.1 Hence, if not even St is correctly captured, no
confidence in the results can be attested at all. If, on the other
hand, St matches the experimental value, this does not suffice to
demonstrate that the simulation as successful [27].
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Fig. 2. Simulations of the flow over a square cylinder: instantaneous velocity and pressure fields for URANS (left, St ¼ 0:121) and LES (right, St ¼ 0:144); experiments (not

shown, St ¼ 0:143); ReD ¼ 105 [26]. (a) URANS: velocity; (b) geometric setup; (c) LES: velocity; (d) URANS: pressure; (e) LES: pressure.

log k

lo
g 

E

τRANS τLES τDNS = 0

Fig. 3. Idealized spectrum of turbulent kinetic energy of isotropic turbulence with

respect to the wavenumber k and schematic of the extent of modeling employed

by the traditional simulation strategies DNS, LES, and RANS. The vertical dotted

line marks the aim of VLES and corresponding hybrid LES/RANS methods.
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The example given here illustrates the difficulties traditional
URANS calculations may encounter. On the other hand, URANS
simulations can be substantially more successful in determining
the mean flow than a steady RANS computation [28]. In our
opinion, the main concern when applying URANS is the con-
fidence one can have in the results when no experimental data are
available for validation. Sometimes grid convergence is not
achieved in the range of commonly employed grid resolutions
[29]. The use of URANS can hence only be advocated in cases of
clear scale separation as described in the beginning of this section.
When this is not the case, as in the second situation discussed, the
approach seems delicate.

2.2. Large eddy simulation

LES is often introduced based on the filtering concept [30]. If a
spatial filter G ¼ GDf

is applied to a variable f this yields a
smoothed counterpart f with scales smaller than the filter width
Df being removed. Although technically difficult near walls and
other complex situations, this filter is considered to be some sort
of convolution, i.e. f ¼ G �f, with generally faf. As for RANS
modeling, the nonlinear convection term in the transport equation
introduces an unclosed term, describing the impact of the
subfilter scales on the resolved motion, it is replaced by a model
term tLES

ij . The filter width Df then has to appear as a parameter in
the model, usually called D. Note, however, that in most LES,
filtering is rather a concept behind the development of the
method than an explicitly applied procedure to specify the
resolved motion [31].

For efficiency reasons the ratio of the filter width Df to the
step size of the grid Dg is usually set equal to one or to a small
integer. The step size of the grid hence determines the cutoff
scale of the filter and therefore the corresponding parameter
in the model. For these and also for historical reasons, tLES

ij is
usually called subgrid-scale (SGS) model. The aim with D�Dg is to
benefit to a maximum from the resolution capacity of the grid in
shifting the cutoff of the implicitly introduced filter to higher
wavenumbers if the grid is refined. Hence, in the ultimate limit
Dg ! 0, the SGS model vanishes so that the simulation turns into
a direct numerical simulation (DNS) without turbulence model
(see Fig. 3).

The basic strategy with LES is to resolve most of the turbulent
kinetic energy K of the flow, while modeling most of the
dissipation e. The possibility of this separation arises from the
fact that K is determined by the large scales of motion and e by
the small scales [32]. The promise of LES is that simple models
will suffice since the modeled components are remote in scale
from the resolved ones [33]. As a rule of thumb, K should be
resolved to at least 80% to warrant reliable results [23]. The
concept, although clear and simple, works well for high-Reynolds
number flows remote from boundaries but bears practical
difficulties for high-Re flows near walls, for transitional flows
and for the specification of inflow data.
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Fig. 4. Grid scale Dg determined according to the three equations given in the text:
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To achieve a coherent picture only Dz is varied, whereas Dx and Dy were set to one.

For Dzo1 flat cells are obtained, for Dz41 the cells have the shape of needles.
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Another question repeatedly discussed in the literature on
hybrid LES/RANS methods is the choice of an expression for D�Dg

in the case of strongly anisotropic grids (the index g will be
dropped from now on). The issue principally is an LES-issue but it
is relevant in the present context, particularly when considering
near-wall flows where typically anisotropic grids are employed.
Many hybrid methods rely on D not only as part of the LES model
but also when interfaces or blendings between LES and RANS are
determined.

The expression most often used for LES is the geometric mean

Dg ¼ ðDx Dy DzÞ
1=3 (2)

or its generalization, the cubic root of the cell volume. In
case of anisotropic grids, definition (2) tends to provide a
fairly low value, as illustrated in Fig. 4. For this reason, the
quadratic mean

Dg ¼
D2

x þ D2
y þD2

z

3

 !1=2

(3)

is advocated in some publications. Other authors favor the
maximum [34]

Dg ¼maxfDx;Dy;Dzg. (4)

2.3. Very large eddy simulation

Based on the initial successes of LES in predicting prototypical
flows, attempts have been made to apply traditional LES to
complex flows of industrial relevance. With the computer
resources available, however, the resulting computational grids
necessarily had to be coarse—too coarse to resolve the desired
amount of kinetic energy, and therefore were called very large
eddy simulation (VLES) by some researchers [36]. This approach
(even with adjusting model constants) did not meet with success.
First, the LES cutoff is now located within or even below the
wavenumber range of the most energetic modes. Modeling the
interaction between the resolved motion and the unresolved
motion is very delicate in this case, and there is little hope for
success. Second, the numerical discretization scheme, mostly
disregarded in the classical LES model development, impacts on
the scales near the grid scale which are the physically relevant
ones with VLES.

An illustration of the first point addressed here can be given
using a typical spectrum of turbulent flow displayed in Fig. 3.
A traditional SGS model, e.g. the Smagorinsky model, and a
grid sufficiently fine to resolve the inertial range of the turbulent
spectrum will yield excellent results, since this is a scenario
for which such a model is designed and calibrated. For this
case, the length scale D used in the SGS model is much smaller
than the scales of turbulence containing most of the energy
as reflected by the maximum in Fig. 3. These scales are
characterized by the integral length-scale ‘ ¼ K3=2=e. Production
of turbulent fluctuations occurs at these larger scales which are
well resolved. The unresolved dissipation is related to D by the
SGS model. Increasing the step size of the grid increases D
and the dissipation of the model. As a consequence, the impact of
the model on the resolved flow field increases. Once large
amounts of kinetic energy are unresolved, i.e. latest when
the grid spacing is of the order of ‘, the LES results start
to deteriorate. Then turbulence production is not resolved
anymore whereas dissipation is largely overpredicted. Traditional
SGS models contain no mechanism that stops them from
increasing the turbulent dissipation beyond physical meaningful
values.

Despite the failure of the naive approach, the idea to predict
the large-scale unsteadiness of the flow at minimum cost remains
attractive and such coherent structure capturing, as it was called
by Ferziger [36], is the aim of many hybrid LES/RANS methods.
This however requires a substantially more sophisticated model-
ing approach. In the literature, the acronym VLES has occasionally
been used synonymously for a wide range of methods [37] such
that this term is not descriptive anymore. Here, we will restrict
VLES to its original intent: LES performed with traditional SGS
models on coarse grids. VLES in this sense cannot be recom-
mended. A rare exception is the generation of inflow conditions
for LES [38,39].

2.4. Structural similarity of LES and RANS equations

For the sequel it is necessary to define the specifics of LES
models and RANS models. Using an unsteady definition of a
Reynolds average as discussed above, the transport equations for
the Reynolds-averaged velocity huii read

qthuii þ qxj
ðhuiihujiÞ þ qxi

hpi ¼ qxj
ðnqxj
huiiÞ � qxj

tRANS
ij . (5)

The analogous equations for the resolved velocity ui in an LES read

qtui þ qxj
ðuiujÞ þ qxi

p ¼ qxj
ðnqxj

uiÞ � qxj
tLES

ij (6)

(recall that p is the density-divided pressure). The obvious
similarity is further enhanced by the usage of the eddy viscosity
concept for most SGS and the fact that the employed models are
often derived from RANS counterparts. As a consequence, not only
the governing equations exhibit a structural similarity, but also
many of the turbulence models.

A RANS model depends on physical quantities describing the
entirety of the turbulent fluctuations. For example, the K–e model
determines

tRANS
ij ¼ f ðqxi

huii;K; e;CÞ, (7)

where C is a model constant, K the turbulent kinetic energy, and e
the turbulent dissipation rate. The latter two are determined from
other relations, but this is of no matter here. LES based on the
Smagorinsky model uses a relation like

tLES
ij ¼ f ðqxj

ui;D;CÞ, (8)
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where D is a length scale related to the numerical grid,
e.g. D ¼ ðDxDyDzÞ

1=3. Since there exist many variants of LES and
RANS models we define the following: a model qualifies as an LES
model if it explicitly involves in one or the other way the step size
of the computational grid. RANS models, in contrast, only depend
on physical quantities, including geometric features like the wall
distance.

Mathematically a partial differential equation problem is well-
posed only if appropriate initial and boundary conditions are
specified together with the equation. For turbulent flows with
stationary statistics, initial conditions (ICs) are a minor issue,
since they are generally ‘‘forgotten’’ after a short time. Boundary
conditions, on the other hand, are often more important and it is
seen below in the context of DES, for example, that a RANS model
conceived for computing a steady solution can be forced to run
in an unsteady mode by supplying it with unsteady boundary
conditions.

Another concept is also important here, the concept of implicit
filtering [40]. Suppose, the LES model in (6) were exact. Then, the
computed quantity, here denoted ui, would exactly equal G � ui.
Hence, changing the point of view it can be said that the exact
model term, by means of the evolution of the transport equations,
determines the filter G. Further on this line of thought we may say
that the applied model term determines the quantity being
computed. Forgetting about the different notation of the un-
knowns in (5) and (6), it is the fact that tLES

ij or tRANS
ij is used in the

equation which determines whether the computed solution is a
RANS solution or an LES solution.

Based on the implicit filtering idea, there are approaches,
where D in an SGS model and hence the implicit filter is not
related to the numerical grid but directly specified as an
independent length scale by the user [40,41]. Extending the
above definition to include these situations, we call LES a method
where the user specifies the meaning of ‘‘large’’ by providing a
length scale, be it directly or via the grid. This definition also
covers LES with explicit filtering techniques, like approximate
deconvolution model (ADM) [42] or high-pass filtered eddy
viscosity models [43], and implicit SGS models such as monotonic
integrated LES (MILES) [44], implicit LES (ILES) [45], etc. For these
methods either the filter width is prescribed or the truncation
error of the numerical scheme serves as the SGS model with the
strongest attenuation of fluctuations occurring at wavenumbers
related to the grid-size. On the other hand this generalized
definition of LES does not cover methods where a certain fraction
of the turbulent kinetic energy is required to be resolved as
discussed below, since that specifies the energy contents and not a
length scale.
Fig. 5. Possible types of interfaces between an embedded LES and the surrounding

RANS region, here illustrated with segregated modeling.
2.5. Principal approaches to coupling LES with RANS

The similarity of the equations and the considerations in
Section 2.4 suggest the concept of unified modeling. This approach
is based on using the same transport equation for some resolved
velocity ui, yet to be specified in its meaning:

qtui þ qxj
ðuiujÞ þ qxi

p ¼ nqxj
qxj

ui þ qxj
tmodel

ij , (9)

or, if an eddy viscosity ansatz is used,

qtui þ qxj
ðuiujÞ þ qxi

p ¼ qxj
ðnþ ntÞqxj

ui

� �
. (10)

A transition from LES to RANS can be achieved in several ways.
One possibility is blending, i.e. by a weighted sum of a RANS model
and an LES the models according to

tmodel
ij ¼ f RANStRANS

ij þ f LEStLES
ij . (11)
In this equation f RANS and f LES are local blending coefficients
determined by the local value of a given criterion.

Another strategy is to use a pure LES model in one part of the
domain and a pure RANS model in the remainder, so that a
boundary between a RANS zone and an LES zone can be specified
at each instant in time. The transport equation for the velocity,
however, is the same in both zones with no particular adjustment
other than switching the model term at the interface. This way the
computed resolved velocity is continuous. We term this strategy
interfacing LES and RANS. Furthermore, if the interface is constant
in time, it is called a hard interface. If it changes in time depending
on the computed solution, it is termed a soft interface.

Unified modeling is simplified by the fact that many LES
models are inspired from RANS models and hence bear the same
structure. The eddy viscosity concept used for illustration in (10)
is one instance. Others are observed as well, such as the use of a
transport equation for the turbulent kinetic energy of the
unresolved motion. With RANS, this is an equation for the
turbulent kinetic energy K ¼ hu0iu

0
ii, while with LES, this is an

equation for the trace of the SGS tensor Kt ¼ tii=2. This quantity is
often called SGS kinetic energy. Further examples will be
encountered below. In principle, any RANS model can be turned
into an LES model according to the above definition by introdu-
cing the step size of the grid as a length-scale of the model,
allowing to reduce the amount of damping of the resolved motion
if the grid is refined. This approach leaves room to specify the
particular way of blending or interfacing the models as illustrated
by the examples in Sections 3 and 4, respectively.

Instead of switching the model, a hybrid method can also be
constructed by employing everywhere the same secondary
transport equations for a given model, may it be a RANS or an
LES model, and merely adjust some terms in these equations. This
modification should be designed to alter the model behavior from
RANS to LES, or vice versa. Thereby it is commonly more practical
to turn a state of the art RANS model into an acceptable SGS model
for LES than the other way round. This could be achieved by
switching at the interface to the step size of the grid as a model
length-scale in selected terms of a transport equation.

Segregated modeling is the counterpart to unified modeling. LES
is employed in one part of the computational domain, while RANS
is used in the remainder. With segregated modeling, however, the
resolved quantities are no more continuous at the interfaces.
Instead, almost stand-alone LES and RANS computations are
performed in their respective subdomains which are then coupled
via appropriate boundary conditions. Except for laminar flows, the
solution is discontinuous at these interfaces. This avoids any
gradual transition in some gray area characteristic of unified
turbulence models. Segregated modeling allows for embedded LES

by designing a configuration where in an otherwise RANS
simulation a specific region is selected to be treated with
LES—with full two-way coupling between the zones (see Fig. 5).
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Let us mention that in the literature the terminology zonal

(together with its counterpart non-zonal) is frequently used to
classify hybrid LES/RANS methods in the sense that there exist
well-defined LES zones and RANS zones. The precise meaning of
the term zonal varies in different publications. It is straightfor-
ward to identify segregated modeling as a form of zonal coupling
and some methods following the paradigm of unified modeling as
non-zonal. In fact, in their recent review, Sagaut et al. [46]
distinguish two main classes of hybrid LES/RANS methods:
‘‘zonal’’ or ‘‘global’’ models, which match the definitions of
segregated and unified modeling, respectively. But there is also
frequent ambiguity. For many hybrid methods it is possible to
discern a RANS zone within the computational domain which is
distinct from the region computed with LES—whether these
zones change in course of a simulation or not. Some researchers
then use the term ‘‘zonal’’ to identify only methods where the
boundaries of these subdomains are constant in time. The
distinction is hence made by the stationarity of the RANS and
LES regions and only indirectly on how the hybrid method was
devised. Others choose to distinguish zonal from non-zonal if the
subdomains are predefined by the user. For example, the unified
model with a stationary, user-defined border between the LES and
RANS subdomains employed in [47], although categorized in [46]
as a global model, was also given the attribute ‘‘zonal’’ in front of
its name. Moreover, even for methods where the location of the
interface between zones is determined by the solution itself, say a
functional of the mean shear-stress at the closest wall, it also
depends, often indirectly, on parameters and/or the grid specified
by the user a priori. This is the reason why, with some
justification, such methods might also be considered to employ
user-defined coupling. Due to the ambiguities associated with the
terms zonal and non-zonal the present terminology is preferred
(see also Fig. 28).

Regardless how precisely the coupling between different
regions with different models is accomplished, four principal
situations can be distinguished. These are best illustrated
with segregated modeling but carry over to all other hybrid
methods. Fig. 5 shows a situation of an LES embedded in a
RANS solution which is assumed to be steady. Taking the
perspective of the LES domain, the left-most boundary is an
LES-inflow boundary. The steady RANS solution however does
not provide any turbulent fluctuations. Performing LES on the
downstream side of the interface, on the other hand, requires
proper LES-boundary conditions, i.e. realistic turbulent fluctua-
tions. The problem hence is the same as with LES-inflow
conditions discussed in reviews of LES and briefly detailed in
Section 5.1. The second situation is the one of an LES-outflow
boundary. At first sight it seems trivial since most LES are
performed with a downstream outflow. Here, however, as a more
general case, the interface must allow for information to be
propagated upstream if the RANS simulation downstream of the
LES zone is to be of any use at all [48].

The third situation is the one of tangential coupling.
A distinction between two situations can be made: near-wall
flow and coupling to an outer flow. With a RANS zone between the
wall and the LES region, is not obvious whether the right amount
of resolved fluctuations is obtained in the LES zone near the
interface. This becomes clear if, for example, one assumes a naive
gluing of LES and RANS by a continuous discretization of the
velocity field and its equations of motion and switch the
turbulence model at the interface, from nRANS

t to nLES
t . The LES

solution is then damped near the interface by the steady or slowly
evolving RANS solution and hence is likely to exhibit a fluctuation
deficit. The RANS model on the other side of the interface
receives fluctuations from the LES and is thus pushed toward an
unsteady mode. This can lead to double accounting of fluctuations,
once by the RANS model conceived to represent the entirety of
fluctuations, and second by the resolved motion on the RANS side.
Even more: increasing gradients of the resolved flow in the RANS
region can increase nRANS

t beyond the steady RANS value via its
dependence on the velocity gradients. On the other hand, for
many applications the outer tangential boundary can be regarded
as similar to the outflow boundary [49] and may hence be less
critical.
3. Blending turbulence models

According to Speziale [50,51], a good unified turbulence model
should possess at least three properties: (1) in the coarse grid
limit, the hybrid should turn into a RANS model, (2) for well-
resolved simulations a DNS should be recovered, and (3) no
explicit filtering or averaging should be applied. The first
property rules out traditional VLES as discussed in Section 2.3.
The second necessitates an estimation of the local resolution
such that the model can switch itself off. This introduces a
dependency of the hybrid formulation on the step size of the
grid. The last property was supposed to ease the application
of the model to flows in complex geometries with highly stretched
grids and no homogeneous directions and was an argument
against the use of some of the advanced SGS models favored at
the time.

Since hybrid LES/RANS are intended for complex flows where
many simplified modeling assumptions are likely to be invalid,
Speziale insists that a state-of-the-art RANS model should be
recovered in case of coarse resolution. Such a model contains at
the very least two auxiliary transport equations for independent
scales used in the turbulence model and can account for some
effects of anisotropy and curvature due to a nonlinear relation of
turbulent stresses and the resolved strain-rate and vorticity
tensors.

3.1. Damping of a RANS model (FSM)

Unified turbulence models fulfilling the above demands can be
constructed by resolution-dependent damping of a RANS model
[50,51]. This approach is neither classical RANS nor classical LES. It
was therefore given the general name flow simulation methodo-
logy (FSM) by collaborators of Speziale [52,53].

3.1.1. Description of the method

The key idea of FSM is to determine the model term in (9) as

tmodel
ij ¼ fD

D
‘K

� �
tRANS

ij with 0pfDp1. (12)

This decomposes the hybrid model into two factors: the RANS
model and the so-called contribution function fDðD=‘K Þ. The RANS
model is responsible for the physical modeling of all turbulence
and depends only on physical quantities. Any kind of RANS model
can be used, but following the recommendations of Speziale,
explicit algebraic Reynolds stress models with strain-rate depen-
dent coefficients have mostly been applied. Using the K–e or the
K–o model, on the other hand, yielded almost as good results in
many applications [54].

The role of fD is to damp the contribution of the RANS model,
since part of the turbulence is resolved in an intermediate regime
where the solution becomes unsteady. In fact, the issue is not
the resolution of the kinetic energy but the resolution of the
dissipation which, if not resolved, has to be provided by the
model. If the grid is so fine that the entire dissipation range is
resolved, the model should switch itself off. The idea hence is to
estimate the ‘‘distance from DNS’’ by computing the factor D=‘K,
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where D represents the local grid size. Speziale suggested to use
the Kolmogorov length-scale ‘K � n3=4=e1=4. Hence, the RANS
model equations need to be solved not only to compute tRANS

ij ,
but also to obtain an estimate for ‘K.

The constraint 0pfDp1 ensures that FSM can approach an
URANS for coarse grids, coarse compared to ‘K , and a DNS for fine
grids, i.e. a grid size of the order of ‘K . This is depicted in Fig. 6.
FSM works fine in both limits, since the RANS model was
conceived for this purpose and the DNS is free of any model. In
between these two extremes, FSM can be classified as a kind of
‘‘untraditional’’ LES bridging the gap between LES and RANS. How
well it performs in this regime depends on the contribution
function, but also on whether the separation of variables assumed
in (12) is valid or not, and last but not least on the grid and
boundary conditions employed.
Fig. 8. Comparison of DNS and FSM for the flow over a bluff body: contours of Q ¼ ðO
(a) DNS (eight million cells); (b) FSM (one million cells).
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Fig. 6. Illustration of the FSM approach based on damping a RANS model by means

of a damping function fD . The solid black curve sketches the ideal energy spectrum

with respect to wavenumber. The end of the dissipation range is marked by the

Kolmogorov wavenumber proportional to ‘�1
K . The vertical dashed line in the

center symbolizes the grid scale proportional to D�1. The curves in the lower part

of the figure illustrate the damping function of (13) for various values of b at fixed

‘K (and n ¼ 1).

Fig. 7. Contours of the FSM damping function for the start-up vortex behind a

backward-facing step; Re ¼ 3000; red: high values, blue: low values.
In [51] the contribution function

fD
D
‘K

� �
¼ 1� e

�b D
‘K

� �n
, (13)

was proposed on a phenomenological basis, using b ¼ 0:001 and
n ¼ 1. The parameter n controls the steepness of the function
and b determines at what resolution level the model contribution
becomes negligible. The role of b was investigated in [52]
where also a slightly different form of the contribution
function was tested. Other versions of fD were tested as well,
e.g. a linear form, more applicable to the URANS limit or,
in order to account for strongly anisotropic grids, different
values of b for the scaling of different components of tRANS

ij based
on a posteriori analysis of DNS data. For the test cases studied,
however, no particular improvements over the original form were
observed.

Hussaini et al. [55] worked on deriving forms for fD on a more
rigorous basis, while still choosing parameters in an ad hoc

fashion. An exponential form similar to (13) turned out to be a
useful choice. On the other hand, D=‘K was replaced by D2, thus
removing the estimate of the physical resolution. First results
for the so-called Kolmogorov flow were promising. Another
issue is the choice of D for strongly anisotropic grids typical for
wall-bounded turbulent flows. Speziale [51] proposed to use the
geometric mean (2), whereas for the examples given below, the
quadratic mean (3) was employed.

In general, fD varies in space and time, as is illustrated for the
example of a startup vortex behind a backward-facing step in
Fig. 7. It is this local and instantaneous damping of a RANS
model that empowers FSM to compute as DNS, LES, and
RANS at different locations in space and different instants
in time within the same simulation. Since fD involves the step
size of the grid, FSM is an LES method according to the above
definition.

3.1.2. The issue of consistency

FSM yields the resolved velocities ui. On the other hand, tRANS
ij

depends on the Reynolds-averaged velocity field huii and two
independent characteristic scales of the turbulence, say K and e.
A problem that is frequently overlooked is how to obtain huii, K

and e in a consistent fashion.
In the RANS limit of FSM, tmodel

ij ¼ tRANS
ij and solving the

governing equations yields the velocity field ui 	 huii consistent
with the Reynolds-averaging operations and hence the assump-
tions in deriving the Reynolds stress model. This velocity field is
the required input when determining tRANS

ij and also for solving
the K–e equations. On the other hand, beyond the RANS limit,
necessarily tmodel

ij atRANS
ij so that uiahuii. Hence, one should

determine huii and use it in the RANS model. An explicit averaging
operation in one homogeneous direction huiiwas performed in the
first example below. Note that employing a two-dimensional
time-dependent Reynolds-averaged flow field huiiðtÞ and hence
two-dimensional time-dependent contribution function and
2
� S2
Þ=2 ¼ 1; Re ¼ 1000; b ¼ 4� 10�3; n ¼ 1. Figures reproduced from from [54].
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Reynolds stresses does not imply that the resulting flow field ui

has to be two-dimensional. The resolved flow field can be
unstable w.r.t. three-dimensional perturbations and develop
corresponding fluctuations as observed in Fig. 8. On the other
hand, it was tried to skip the additional Reynolds averaging and
directly use ui instead of huii. This can work well as illustrated
by the second example below and yields a fairly robust and
inexpensive method [54].
log k, log (1/Δ)

lo
g 

E

Fig. 10. Effect of sudden grid refinement on the resolved motion of turbulence:

ideal spectrum of kinetic energy (solid line) and predicted spectrum before

(dotted) and shortly after (dashed) the increase in resolution; vertical lines

indicate the corresponding grid scale D.
3.1.3. Sample applications

The first example, shown in Fig. 8, is the flow over a square bluff
body at Re ¼ 1000. A DNS was performed using roughly eight million
cells in physical space (a Fourier method was used in the spanwise
direction). The dominant vortex shedding frequency was St ¼ 0:21.
The FSM was computed with only one million cells using b ¼
4� 10�3 and n ¼ 1. The RANS-model transport equations for K and e
were solved in two dimensions only using the spanwise averaged
resolved velocities. In contrast to the URANS results for the square
cylinder flow in Section 2.1, the same Strouhal number as in the DNS
was obtained and the computed solution was three-dimensional.
Using a vortex identification criterion the same kind of Kelvin–
Helmholtz type vortices with deformations in the spanwise direction
as in the DNS can be seen. Of course, less small-scale structures are
observed since they cannot be resolved on the coarser grid.

Another example of a successful FSM application is the
computation of the flow over an axisymmetric body with a blunt
base at supersonic speeds ðMa ¼ 2:46Þ and Re ¼ 3:3� 106. This
Reynolds number is too high for DNS or even traditional LES,
whereas RANS simulations are not able to predict the base drag
correctly. In [56] the flow was computed with a compressible
extension of FSM [57,54] employing roughly two million grid
points. Contrary to the example above, the transport equations for
K and e were solved on the three-dimensional grid using the
resolved velocities directly. In addition, fD ¼ 1 was enforced in the
supersonic approach flow upstream of the base forcing the thin
boundary layer to be computed in RANS mode. The separated flow
becomes unsteady and the dominant flow structures are revealed
in Fig. 9a using the vorticity magnitude. Detailed comparisons of
FSM results with DNS data for lower Reynolds numbers can be
found in [54,58]. The base-pressure coefficient presented in Fig.
9b is a central quantity to be predicted. A state-of-the-art RANS
solution exhibits an unphysical pressure peak at the axis, while
the FSM result matches the experimental values. This is still the
case if the grid is altered or if b is varied [56]. In the latter
reference, DES (see Section 4.1) was also performed on the same
grid, but using a different flow solver with a lower order
numerical method. The results were substantially worse, but
improved for finer resolution [59]. Applications of FSM for
parameter studies w.r.t. flow control for the baseflow can be
found in [60].
-0.1
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-0

-0.0

-0.0

C
p

Fig. 9. Supersonic base flow at ReD ¼ 3;300;000 and Ma ¼ 2:46 computed using FSM

(courtesy of R.D. Sandberg).
3.1.4. Assessment and recommendations

Resolution-damped RANS models use the same turbulence
model in the entire computational domain and base the model
contributions on the actual resolution, thus producing a smooth
transition. By design, they are consistent with RANS for coarse
grids while retaining an eddy-resolving capability for a sufficiently
well-resolved simulation. As a result, they are user-friendly since
the transition between RANS and LES occurs in the equations
without user-interference. However, all difficulties are now shifted
to choosing the ‘‘appropriate grid,’’ which is not a trivial task.

FSM has been applied for some years now and several
successes have been reported. The method works particularly
well for flows with strong instabilities, e.g. featuring geometries
with sharp corners and separated flows. Problems may arise if
information on unsteady structures of a region in RANS mode is
crucial to the outcome of the simulation and, therefore, needs to
be generated in a region of higher resolution. This is illustrated in
Fig. 10. Suppose that at an upstream location the grid scale can
be represented by the left vertical dashed line leading to the
corresponding spectrum of the resolved motion. When the
turbulent flow is transported by the mean flow into a region of
higher resolution the high-wavenumber content is not yet
existing and needs to be produced by the turbulence cascade or
by flow instabilities (see also the discussion in [61]). This problem
can be tackled by two approaches: (1) Treat an upstream RANS
region as an LES-inflow situation and use a standard technique to
generate appropriate fluctuations, such as synthetic turbulence,
stochastic forcing, etc. (2) Resolve the physics if they are that
-1 -0.5 0 0.5 1
r

4

2

.1

8

6
experiments
RANS
FSM

with b ¼ 0:001 and n ¼ 1. (a) Vorticity contours; (b) base-pressure coefficient
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crucial to the simulation outcome. The latter is particularly true
for laminar–turbulent transition where DNS-like resolution is
required at locations where the flow structures arise. In FSM for
cases like those discussed above, it is frequently beneficial to
purposely set fD to 1 or to 0. The former was used to impose a
pure RANS simulation along the body in the second example, the
second may be an option to enhance transition of the FSM
solution to a fully turbulent state but was not applied above.

3.2. A weighted sum of LES and RANS model

A simple way to combine two distinct turbulence models into a
hybrid model is to apply a blending of the form

fhybrid
¼ ffRANS

þ ð1� f ÞfLES with 0pfp1, (14)

where f represents the quantity to be merged. It can be a model
term in the momentum equation such as nt or a term in a
secondary equation of the turbulence model. The blending factor f

is a continuous function in space and time, commonly chosen in
an ad hoc manner and calibrated empirically. The factors f and
ð1� f Þ constitute a partition of unity since they add up to 1. One
example of such a method for deriving hybrid LES/RANS models is
discussed in the following.

3.2.1. Description of the method

The shear-stress transport (SST) turbulence model of Menter
[62] can be used as a basis for constructing a hybrid LES/RANS
method. For the SST, two RANS models are blended: the K–o
model near walls to a K–e model farther away. For the hybrid
method [63,64], the K–e RANS-model is replaced by an SGS-model
for LES using an equation for the subgrid kinetic energy. The
resulting nt in (10) is then determined as

nt ¼ fnRANS
t þ ð1� f ÞnLES

t ¼ f
K

o
þ ð1� f ÞCs

ffiffiffiffi
K
p

D, (15)

where Cs was chosen as 0.01. Furthermore, f is a modification of
the SST-blending function, i.e. a hyperbolic tangent function
depending on wall distance d and on solution-dependent para-
meters (K and o):

f ¼ tanhðZ4Þ with Z ¼ 1

omax
500n

d2
;

ffiffiffiffi
K
p

Cmd

( )
, (16)

where Cm is the constant of the SGS model. In addition to using the
blended nt of (15) in the production and turbulent diffusion terms,
in the equation for K also the dissipation rate is blended by

e ¼ f eRANS þ ð1� f ÞeLES

¼ fb�Koþ ð1� f ÞCs
K3=2

D
, (17)

where b� and Cs are constants from the original RANS and LES
closures, respectively. For 1=o in (16), either a blending similar to
(17) or the unmodified result from the o-equation can be used.
Variations of the blending function were proposed in [65] with
and without explicit dependencies on the grid size and the wall
distance. In addition, a different underlying RANS model was
employed. However, tests did not reveal a superiority of a specific
form over another.

3.2.2. Sample applications

The resulting model was tested for predicting the unsteady
flow over a ramped cavity with moderate success. The results
obtained with the hybrid method were better than those of pure
RANS or no-model simulations on the same grid. DES, based on
both the Spalart–Allmaras and the SST model (cf. Section 4.1)
were also tested but yielded only steady results for the grid
employed. Note that the method described here is distinct
from DES using SST blending discussed below. For the latter,
only the length scale in the dissipation term of the model is
switched, whereas the definition of the eddy viscosity itself is left
unchanged.

3.2.3. Assessment

In general, blending of LES and RANS with (14) can lead to the
generation of unphysical flow structures. For example, Baggett
[66] showed that near walls an artificial cycle is invoked due to
such blending which generates larger-than-physical streamwise
streaks and vortices. These ‘‘super-streaks’’ will be encountered
again below in Section 4.1.3 in connection with the gray zone of
DES. A possible explanation for these artifacts is the so-called
modeled stress depletion (MSD) [67]. For MSD, in a transition
region between RANS and LES, modeled stresses in a simulation
have been reduced (here, by the blending), whereas the resolved
stresses also included in the blending have not yet reached the
equivalent higher values. If this is the case, mean flow profiles
show artifacts such as spurious buffer layers.

In the limit of vanishing extent of the blending region, the
blending function f approaches a step function. This turns the
hybrid method into a simple interfacing of existing models as
described in Section 4 below. Since the weighted sum in (15) can
be considerably easier to implement into existing flow solvers
than explicit interfaces, it may be considered as an alternative
to some of these methods. However, regarding the quality
of the solution, trust issues similar as for the URANS approach
mentioned in Section 2.1 always remain.
4. Interfacing RANS and LES models

4.1. Detached eddy simulation (DES)

4.1.1. Description of the method

Spalart and Allmaras [68] devised a one-equation RANS model
employing a transport equation for the eddy viscosity. More
precisely, the governing equation is

qt ~nþ hujiqxj
~n ¼ cb1

~S~nþ 1

s~n
qxj
ðnþ ~nÞqxj

~n
� �h

þcb2ðqxj
~nÞ2
i
� cw1f w

~n
d

� �2

. (18)

for ~n ¼ nt=f v1ðy
þÞ where f v1 is chosen such that ~n�y in the

proximity of walls. Coefficients and blending functions can be
found in the original paper [68] or in other articles on DES.2

Spalart et al. [11] then applied the following modification. The
last term in (18) represents a destruction term for ~n depending on
the wall distance d. This physical length scale can be replaced by a
length scale CDESD involving the step size of the grid D and the
model constant CDES. Hence, the Spalart-Allmaras model turns
into an LES one-equation SGS model. A reduced length scale
increases the destruction term and hence yields a reduced eddy
viscosity. The authors specifically chose

D ¼ maxfDx;Dy;Dzg, (19)

and calibrated the constant to CDES ¼ 0:65 by means of isotropic
turbulence [69]. Lower values have been used by others,
presumably to compensate for numerical diffusion [34]. The
second step concerns near-wall flows. In fact, d is replaced with

~d ¼ minfd;CDESDg, (20)
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which is natural, since near the wall the length scale should not
increase beyond the RANS value. Fig. 11 illustrates the situation.
Close to the wall, where doCDESD, the model employed is the
original RANS model. Away from the wall, were d4CDESD, the
model turns into an SGS model. The transition in nt is continuous
and smooth since only a source term in the auxiliary equation
changes smoothly. The fact that a RANS model term is used,
however does not preclude the flow field from becoming
unsteady. In fact, even with stationary statistics the computed
DES solution generally is unsteady near the wall due to the
fluctuations in the outer flow.

The authors coined the term detached eddy simulation (DES)
for this approach as it is meant to blend an LES of the outer flow,
resolving the detached eddies far from any boundary in an LES-
like manner, while using a RANS model for the flow near the wall.
The latter is aimed at yielding a suitable description of the near-
wall flow in a statistical sense which only requires a fine grid in
the wall-normal direction but can be used with a coarse grid in
the tangential directions. The switch between the two approaches
is accomplished by an automated criterion and relieves the user
from its specification.

Eq. (19) is based on the argument that with LES the coarsest
step size determines the resolvable vortices. This issue is rather an
LES than an LES/RANS issue and discussed in Section 2.2 above,
but it also influences the position of the LES/RANS interface. Good
arguments for (19) can be found in [70]. Furthermore, one is on
the safe side as explained above. In [71] a quadratic mean was
used to determine D yielding only slight changes in the result.

The basic idea of DES can be combined with other RANS
models as well. A candidate is the SST model [62] which is widely
applied nowadays. For this DES–SST, the length scale in the
dissipation term of the K-equation can be modified to

‘DES ¼ minf‘SST;CDESDg. The model parameter can be determined

via CDES ¼ ð1� f 1ÞC
K�e
DES þ f 1CK�o

DES using the blending function f 1 of

the original SST model with CK�e
DES ¼ 0:61 and CK�o

DES ¼ 0:78 [72].

4.1.2. Applications to flows with detached eddies

The first applications of DES were concerned with high-lift
airfoils. In [69] the flow around a NACA-0012 airfoil was computed
with Re ¼ 105 for angles of attack a ¼ 0� . . .90�. For small a, the
solution was steady and corresponded entirely to the RANS mode.
For higher a, massive separation developed on the suction side
and unsteady vortices were observed. The results substantially
improved upon two-dimensional URANS. At high angle of attack
the separation point is more or less fixed by the geometry and the
flow in the massive separation region is insensitive to the details
of the near-wall flow. This application hence corresponds to the
design situation of DES. Other applications of this type are the
computation of the flow around a simplified landing gear [72,73]
Δ

LES

RANS d<Δ

Fig. 11. Illustration of the switch between RANS and LES in the traditional DES

approach as discussed in the text.
or the flow around a fighter at high angle of attack [74]. With the
latter, only global values such as lift and drag coefficients were
compared to experimental values. In fact, many published DES
results show qualitative data in terms of flow structures but rarely
quantitative comparisons. There are situations, however, where
this is relevant and answers a precise question. An illustrative
example is the flow around an entire C-130 airplane conducted in
[75] with the purpose of clarifying why parachutists were exposed
to gusts when jumping off the plane. The DES showed a critical
vortex structure close to the door in question without quanti-
tative predictions reported. A review on DES for bluff body flows is
given in [76].

4.1.3. DES as a wall model

With massive separation the coupling between the LES and the
RANS zone in DES is weak or rather uninfluential for the global
result of the simulation. When the flow is attached to a wall the
situation is different. In fact, one can attempt to use DES as a wall
model. Given a particular grid, the point where d ¼ CDESD is fixed,
and hence the interface between the region where an LES and
where a RANS model is employed. Due to the combination of a
higher RANS eddy viscosity and the trigger from outer fluctua-
tions, the solution in the RANS region exhibits weak oscillations.
In the LES region, the solution has to become unsteady. In order to
be a true LES, an amount of 80% or so of the kinetic energy of the
fluctuations should be resolved. The transition between these
regions is critical and takes place in a ‘‘gray area’’ [69].
Fluctuations need to be generated by some sort of instability
[34]. For an attached boundary layer, however, this does not
happen vigorously enough if the method is left alone, as shown by
Nikitin et al. [77]. They conducted simulations of plane channel
flow at various Reynolds numbers to assess this issue. The step
size of the grid in the spanwise direction was deliberately chosen
to be large, up to Dþz ¼ 8000, while maintaining Dþy p1 near the
wall by means of stretching. The results exhibit a spurious buffer
layer with ‘‘super-streaks’’ at the location where fluctuations in
the solution are naturally created. This location is determined by
the grid and is found at a larger distance from the wall.

4.1.4. Enhancements of the basic method

Piomelli et al. [71] tackled the problem of the spurious buffer
layer by supplementing the method with a stochastic forcing
term. It introduces turbulent kinetic energy and enhances the
generation of fluctuations in the LES region close to the interface.
Super-streaks and the resulting unphysical behavior can be
avoided in this manner. This ad hoc forcing was performed for
each component of the momentum equation within a region
surrounding the interface using a smooth envelope. A substantial
improvement of the mean velocity profile was observed so that
this approach seems very promising.

Another modification of the original DES formulation attempts
to avoid unphysical behavior in attached boundary layers by
eliminating the gray zone with MSD altogether or at least severely
shrinking its size. To this end, Spalart et al. [67] added a function
f d to the definition of the dissipation length-scale in (20):

~d ¼ d� f d maxf0; d� CDESDg, (21)

where

f d ¼ 1� tanh½ð8rdÞ
3

 (22)

and rd ¼
nt þ nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qxj
huiiqxj

huii

q
k2d2

¼
~n

Sk2d2
. (23)

The function f d was designed and calibrated such that DES solves
attached boundary layers in RANS mode no matter what grid
resolution is chosen. Intended to prevent DES from a too early
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switch to LES mode, the modified version was called delayed
detached eddy simulation (DDES). It was tested for an array of
prototypical flows and was proclaimed as the new standard. The
change from (20) to (21) has, however, some serious repercus-
sions. In DDES, a dependency on the solution and, therefore, also
on time has entered ~d. Although this can be attractive in general, it
will be seen below that, for DDES, this can result in a sensitivity of
mean flow values to the IC which is clearly undesirable.

4.1.5. DES and DDES for the flow over periodic hills

The flow over periodic hills proposed in [78] has become a
standard benchmark case for testing turbulence modeling
strategies [79]. It was specifically designed to facilitate economic-
al computational studies such that periodic boundary conditions
in the streamwise and lateral directions were used and the hills
were placed inside a channel. The Reynolds number based on bulk
velocity and hill height was chosen as Re ¼ 10;595 to allow for
well-resolved LES benchmark data and at the same time to deliver
a separated and fully turbulent flow suitable to test RANS model
predictions. Lately, it has also been used to evaluate hybrid
LES/RANS methods in several papers. Šarić et al. [80] scrutinized
DES with this configuration and compared the results to LES and
other hybrid methods for different grids and interface locations. In
the following sections this flow is used whenever data are
available to assess the performance of methods facilitating mutual
comparison. Here, we start with own DES and DDES performed on
a grid with roughly one million cells. Reference data from a recent
LES with a grid of 12 million points [81] are used for comparison.
Note that RANS methods have considerable difficulties for this
type of flow as observed with a single hill in [2] or the periodic
case in [4]. A glimpse of these problems is provided by the third
zone in Fig. 23b below, where the RANS solution exhibits a
substantially longer reattachment length than the reference data.

The ICs for the DDES computation were chosen as an ordinary
user might naturally choose them. A realistic procedure is that
first a standard RANS simulation is performed in order to get an
idea about the flow field, the solution of which is then used as IC
for an unsteady simulation. The second case reported here was
started from an arbitrary initialization, here specifically u ¼ 1 and
v ¼ w ¼ 0 everywhere yielding vigorous fluctuations in the initial
phase of the computation. A third choice was also tested, the use
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Fig. 12. Contours of instantaneous streamwise velocity for the flow over periodic hills at

DDES (IC: RANS).
of instantaneous data available from a previous simulation. These
results are identical to the second simulation and hence not
shown here. Averages were determined over at least 800 time
units h=Ub, such that the sampling error is negligible.

In Fig. 12, instantaneous contours of the streamwise velocity
are reported. They show that all simulations yield a similar
unsteady flow field. The large amount of fine-scale fluctuations in
these graphs proves that remote from the walls (D)DES exhibits
LES character as discussed above. On the other hand, it is not
possible to infer from Fig. 12b that DES under similar conditions
exhibits less fine-scale structures than DDES due to the inter-
mittent nature of the large-scale structures [79]. Fig. 13 therefore
provides sample results for statistical quantities selected to
highlight the differences between the results. A location within
the region of mean separation was chosen x=h ¼ 2, where h is the
height of the hills. The mean streamwise velocity profiles agree
fairly well and overall the results are more than adequate, in
particular considering RANS results and other hybrid methods
discussed below. However, most of the flow field is solved in LES
mode and traditional LES on the same grid delivers results of a
similar quality [82,80]. Differences between the variants of DES, if
they exist, are mostly visible near walls. At the upper wall, an
attached boundary layer exists and the interface of the classical
DES is slightly inside the boundary layer. DDES switches therefore
somewhat later, yielding lower values of resolved wall shear-
stress. However, depending on the IC, the resolved turbulent
longitudinal stresses of the two DDES differ by roughly 50% which
is somewhat disturbing. Even worse, at the lower wall, the DDES
with RANS IC shows an unphysical pronounced near-wall peak
and both normal stress components deviate in most of the flow
field from the other DDES and the DES solution. Such a sensitivity
of DDES toward variations in the IC was conjectured in [67], but in
the present case, visual interpretation of the instantaneous
solution does not point to this issue as suggested in the reference.

4.1.6. Assessment

Spalart stated in [34]: ‘‘It is a beauty and a danger of DES that it
is robust to grid spacings that are too coarse for accuracy.’’ In fact,
many early results using DES were obtained on extremely coarse
grids. This applies particularly to the spanwise direction of
geometries invariant in this direction [83]. Practitioners are used
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arbitrary instants in time. (a) Reference LES [81]; (b) DES; (c) DDES (IC: U ¼ 1); (d)
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to obey rules of near-wall resolution in terms of the wall distance
of the first grid point from the wall. With DES, however,
an LES-type simulation is performed in the outer flow. Hence,
the grid has to be sufficiently fine, also in the spanwise direction,
to capture the kinematics of these vortices [84,85]. With under-
resolved simulations the behavior becomes highly nonlinear such
that results even for the mean flow [86] can deteriorate if the grid
is refined.

The DES of the subcritical flow around a circular cylinder at
Re ¼ 140;000 in [69] resulted in a separating shear layer
substantially thicker than in the experiment and in LES of the
same flow [87]. The transition process in this shear layer, however,
determines the near wake to a substantial extent and is not
adequately captured when the flow field is smoothed and a
dissipative SGS model is used. This yielded a recirculation length
of the DES markedly different from the experimental value [69].
With such transitional regions the only reasonable strategy to-
date seems to be an increase in the resolution up to near-DNS
spacing [88,34]. In this situation, DES as well as LES are
problematic approaches. If the transition by itself is not of
interest, addition of stochastic forcing as mentioned above might
be a strategy to alleviate this problem, but it seems delicate in its
tuning to a given situation. Also note that large time steps can
have a similar excessive damping effect as too coarse resolution in
space. A detailed discussion and helpful guidelines w.r.t. compu-
tational grid requirements for DES can be found in [34].

Finally, the assessment of DES solutions should be mentioned.
In fact, many DES in the literature are inspected visually,
relating a higher amount of unsteadiness to a better simulation
[34]. This might be suitable for some situations as mentioned
above. In general, quantitative validation should still be per-
formed. It is then necessary to account for the modeled
fluctuations in the RANS and the gray zone and to add them to
the resolved ones.
According to the above experience, it seems advisable to
perform DDES with two different ICs in order to assess their
impact on the overall flow field. For the hill flow no clear
superiority over classical DES was attained, but results by the
authors of the method showed that the goal of removing the issue
of MSD was attained. Application to a wider range of flows is
certainly necessary.

4.2. Layering RANS and LES

As pointed out in Section 1, the resolution requirements near
walls pose a major challenge to the application of LES to complex
flows. This challenge is the main motivation for those hybrid
methods bridging the region between the wall and the LES
domain by a layer computed with a RANS model, hence the name
two-layer model in some publications. LES and RANS solutions
are coupled at an interface which may be either pre-defined
(hard interface) or solution-dependent (soft interface). Apart from
the soft/hard distinction, different hybrid models employ different
RANS and LES models, but moreover they distinguish themselves
by the quantities which are explicitly coupled, and how these are
coupled. With this approach, the models themselves or quantities
directly used in the models are matched at an interface and not a
term in the transport equation of the turbulence model, as with
DES or DDES.

4.2.1. Definition of the interface location

An integral part of any two-layer model is the definition of an
interface location y� in a suitably chosen coordinate system. Pre-
defined hard interfaces are commonly placed by choosing a grid
line or a distance from the wall, e.g. y� ¼ yint. Considering the
evolution of the flow in the downstream direction, some
researchers sought for improvements of two-layer models by
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Fig. 14. Interface location and contours of instantaneous velocity for the turbulent

flow over a backward-facing step using a soft-interfaced two-layer hybrid LES/

RANS model (K� ¼ 0:2) [90].

J. Fröhlich, D. von Terzi / Progress in Aerospace Sciences 44 (2008) 349–377 363
employing soft interfaces that keep on adjusting with the flow, so
that the interface position y� changes with time. An additional
benefit of such a method is that the user is relieved from deciding
on a good switching location prior to the simulation. One
possibility to achieve this is to specify the wall-distance in a
solution-dependent coordinate system. The switching between
LES and RANS can then be placed at the same location y� ¼ const:
in this coordinate. Using the coordinate in near-wall scaling

y� ¼ yþint ¼
yintut
n

(24)

is one example ðut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
htwalli=r

p
Þ. For attached turbulent flows, a

location in the logarithmic layer of the streamwise velocity profile
might be chosen, e.g. yþ ¼ 100.

For separated flows, twall vanishes at separation and reattach-
ment points making this coordinate system obsolete,
although this can be handled easily by technical adjustments.
Alternatively, the modeled or total turbulent kinetic energy can
be used to define the switching point as for the approach of Breuer
et al. [89], where

y� ¼
yint

ffiffiffiffi
K
p

n
. (25)

Another switching criterion suggested by Kniesner et al. [90]
follows the idea that, for LES to work, a sizeable amount of
the turbulent kinetic energy must be resolved. This leads to the
use of the ratio of modeled kinetic energy Kt to total turbulent
kinetic energy

K� ¼
Kt

Kt þ 1=2 u0u0 þ v0v0 þw0w0
� �

* +
. (26)

The averaging operation was carried out in homogeneous
directions. Then, if K� exceeds a threshold, say 20%, the interface
is moved away from the wall and vice versa. Furthermore, this
criterion ensures that for well-resolved simulations the RANS
layer eventually vanishes whereas for very coarse simulations
RANS prevails. A typical example of the distribution of such a soft
interface is given in Fig. 14 for the turbulent flow over a backward-
facing step. There K� ¼ 0:2 was chosen yielding an interface
location of yþ � 230.

4.2.2. Description of methods

Cabot and Moin [91] and Piomelli and Balaras [92] reviewed
approaches to wall modeling in LES. Some of these employ a
boundary-layer type Reynolds-averaged transport equation solved
in the interior of the near-wall grid cell on an embedded grid,
e.g. in [93]. A hierarchy of such models is proposed in [16]. As
discussed above, such models also contain some sort of hybrid
LES/RANS coupling, and since the position of the interface is fixed
by the grid, this is a hard interface.

Common to the general layered models to be discussed in this
section is the continuous computation of a quantity f (or several
quantities) across the interface positioned at y�. For the corre-
sponding transport equations, i.e. the momentum equation and
selected model transport equations, this yields

hfiðt; y�Þ ¼ fðt; y�Þ. (27)

Since the RANS models are operated in unsteady mode due to the
coupling with the time-dependent LES, hfi is generally time-
dependent. This raises the issue of compliance with the original
definition of the averaging and filtering operations. For equations
that are valid only in one layer, explicit boundary conditions need
to be set, see below.

Davidson and Peng [94] used RANS with the K–o model
near the wall and a one-equation LES model based on Kt.
The o-equation was solved only in the RANS layer with the
boundary condition

qo
qy

				
y�
¼ 0 (28)

at the interface. The K-equation turned into the Kt-equation at the
interface and was solved continuously. The interface location was
chosen at a certain grid line.

Temmerman et al. [95] coupled a one-equation RANS model
near the wall which uses a K-equation with a one-equation LES
model based on Kt, again implicitly enforcing Kt ¼ K at the
merging points. To enforce

nRANS
t ¼ nLES

t (29)

at the interface in addition, Cm in the RANS layer was modified
using an empirical blending function:

Cm ¼ 0:09þ ðC�m � 0:09Þ
1� expð�y=DÞ

1� expð�y�=D�Þ
. (30)

Again, the asterisk denotes values at the interface which was
identified with a certain grid line.

Kniesner et al. [90] matched various K–e RANS models with LES
employing either a Smagorinsky or the one-equation Yoshizawa
SGS model [96]. For the latter, the transport equation for K (or Kt)
was solved continuously. Additional boundary conditions for the
RANS equations were then obtained from the LES data. For the
Smagorinsky model they read

K ¼
ðCSDÞ2S2

0:3
and e ¼ ðCsDÞ2S3 (31)

and for the Yoshizawa model

e ¼ CeK
3=2
t

D
. (32)

Here, S is the magnitude of the resolved strain-rate tensor, D is a
representative scale for the grid, while CS and Ce are model
constants. The interface location was determined using (26).

Breuer et al. [89] matched RANS and LES based on one-
equation models for K and Kt. No explicit coupling conditions
were needed to be specified. Two different RANS models were
tested: A linear near-wall model based on

ffiffiffiffiffiffi
v02

p
(but expressed in

form of K) and a nonlinear explicit algebraic Reynolds stress
model that is able to account for anisotropies, streamline
curvature and redistribution of energy among different Reynolds
stress components. For this method, the interface was determined
employing (25).

A mismatch of the slopes of the logarithmic velocity profile for
turbulent channel flows is usually visible when using the above
two-layer approaches as described so far. Hamba [97] demon-
strated that this is indeed a fundamental problem independent of
the type of models matched, the method of interfacing, and
whether the RANS region is between the LES and the wall or vice
versa. He conjectured that the mismatch is related to a rapid
change in the length scales of the RANS and LES models. By
allowing for a discontinuous change of the length scales and using



ARTICLE IN PRESS
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information from DNS data he was able to eliminate the
mismatch. Since this is unpractical in a realistic setting, he
suggests to use a linear blending function for adjusting the
turbulent dissipation rate used in the RANS and LES models over a
blending region within the logarithmic region of the velocity
profile. However, the mismatch remained, albeit with a smaller
magnitude than before.

4.2.3. Application to the flow over periodic hills

The flow over periodic hills has been used to scrutinize some
of the two-layer hybrid models discussed above. In [94] the
hard interface was located at the 13th grid point from the wall,
roughly at y � 0:1. Kinks in the mean flow profiles at the interface
occurred so that the result (not shown here) was unsatisfactory.
However, since only 200,000 cells were employed, the coarseness
of the computational mesh might have been too aggressive
for a fair assessment. In [80], reasonable results for the hill
flow were obtained using DES and LES on coarse grids with
480,000 cells.

In Fig. 15, streamlines of the mean flow are shown and
reattachment lengths are given for the reference LES (12 million
cells), the hard-interfaced method of Temmerman et al. [95]
(400,000 cells) and the two soft-interfaced hybrid models of
Breuer et al. [89] (one million cells). All results are acceptable, in
particular bearing in mind the difficulties with RANS for this flow.
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The hard-interface model exhibits the poorest performance, for
both attempted switching locations at the 13th and the 18th grid
line (only the latter is shown here). However, this simulation
used also a coarser grid than the soft-interface methods such
that a direct comparison is somewhat difficult to make. Such a
comparison is possible for the soft-interface models. Here,
the use of a nonlinear relationship between turbulent stresses
and mean flow field clearly pays off. Two reasons for this are
possible. One is that the anisotropies near the wall matter.
Another is that at reattachment and separation points the
normal stress components play an important role. Probably both
points are valid here. In Fig. 16, the above impressions are
confirmed with mean streamwise velocity profiles at chosen
locations in the flow.

4.2.4. Assessment and comparison with other near-wall treatments

Hybrid methods matching RANS with LES in wall-parallel
layers have been developed and tested for more than a decade
now. Albeit the methods have been continuously improved, they
still have not met with the success hoped for. The unphysical
deviations in mean flow profiles occurring at the interface for
simple configurations like turbulent channel flow, as observed in
[77], are casting doubts on the quality of predictions obtained
with such approaches, in particular for applications where the
near-wall flow plays an important role.
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J. Fröhlich, D. von Terzi / Progress in Aerospace Sciences 44 (2008) 349–377 365
In Section 2.5, when discussing tangential coupling near walls,
the possibility of deviations at the interface was mentioned and
attributed to a combination of performing RANS calculations for
flows with steady statistics, but unsteady boundary conditions
(provided by the LES layer) and, as a consequence, some double-
accounting of fluctuations resolved by the URANS, but also
included in the RANS model. A possible remedy is presented in
Section 6.3 by subtraction of the resolved stresses from the RANS
model in the wall layer.

In the literature, another point of view is often taken in order
to explain the observed deficiencies: the lack of physical flow
structures for the LES side of the interfaces. With this in mind, the
supply of additional fluctuations in the vicinity of the interface is
recommended to alleviate the problem. To this end, Quéméré and
Sagaut [49] suggested to couple only the mean velocity fields and
to generate fluctuations by copying them from the LES domain.
For this approach, the models are decoupled and the solution is
matched. It therefore is a segregated approach that is discussed in
Section 5.2 below.

Alternatively, in the context of DES, Piomelli et al. [71]
(see Section 4.1.4) suggested and successfully tested the use of
explicit forcing terms in the momentum equations in order to
generate smoothed random fluctuations under the constraint
of being divergence-free. This approach is readily applicable to
two-layer models and has already been tested for several of the
two-layer models from above, with some modifications, e.g. by
Davidson and Dahlström [98] and Kniesner et al. [90]. Results of
the latter are shown in Fig. 17 clearly demonstrating the feasibility
and promise of such a technique. How the amplitudes of the
forcing have to be adjusted to individual cases is still an open
question.
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4.3. RANS-limited LES

4.3.1. Description of the method

In the literature renormalization group (RNG) theory was used
to determine coefficients for various turbulence models, in
particular a variant of the K–e RANS model [99]. The strategy for
deriving model equations employs an iteration in spectral space.
Small wavenumber bands beyond a cutoff are successively
eliminated and accounted for by modifying the viscosity. Upon
completion of the procedure, a RANS model is obtained with an
eddy viscosity only depending on K and e. If the procedure is
stopped at some finite wavenumber 2p=D related to the step size
of the computational grid, an LES model is obtained. The K and e
equations then turn into equations their SGS counterparts Kt and
et. Depending on the choice of D the whole range from viscous
scales, the DNS-limit, to the integral length-scale of turbulence,
the RANS-limit can be covered. However, in order to close
unknown terms, restrictions due to further modeling assumptions
enter this approach which are delicate.

Such a unified turbulence model was constructed by DeLanghe
et al. [100,101]. The equations for Kt and et are solved in the
entire domain, but in region in LES-mode only one of them is
employed for SGS modeling. Interestingly, it is the equation for the
SGS dissipation rate et which is retained for the LES mode to
determine:

nLES
t ¼ Cme1=3

t D4=3, (33)

where Cm is a constant. The equation for Kt is needed to estimate
the integral length-scale

‘ ¼
K3=2
t
et

(34)

as a measure to determine if locally the coarse-grid (RANS) limit is
reached. The hybrid method is then obtained by replacing D with
‘ in (33) whenever and wherever DX‘. This is equivalent to
replacing nLES

t with

nRANS
t ¼ Cm

k3=2

e , (35)

since K ¼ Kt and e ¼ et is assumed for DX‘. The interface
between LES and RANS models is hence defined by instantaneous
locations where nRANS

t ¼ nLES
t . It is solution-dependent. A low

Reynolds number version with near-wall modeling of the hybrid
method can be found in [102].

4.3.2. Sample applications

The model was tested for the flow over periodic hills, a
backward-facing step, a sudden pipe expansion, and a plane
channel. In Fig. 18 instantaneous contours of the streamwise
velocity component are shown for the hill flow. Only very large-
scale unsteady motion is visible even though the simulation was
ained by RANS-limited LES [102]. (a) Reference LES [81]; (b) RNG-hybrid.
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in LES mode almost everywhere in the flow field. In Fig. 19, mean
velocity and resolved shear-stress profiles at a location inside the
region of mean separation are compared to LES reference data
from [79]. Albeit qualitatively correct, the results still leave room
for improvement, in particular considering results obtained with
other methods (see Section 4.1 or [80], for example). However,
the grid employed was coarse and of poor quality with 230,000
cells only.

4.3.3. Assessment

The RNG hybrid model is easily implemented in a flow solver
with existing K–e model. Constructing a one-equation SGS model
based on the subgrid-dissipation rate is also very interesting. It is
still unclear, however, how this hybrid model performs in a regime
where more flow structures are resolved than shown in Fig. 18.
The results above seem to exhibit a relatively large value for the
eddy viscosity. More studies of the properties of this model and
others which are similar would be needed to elucidate this issue.

The underlying idea of the hybrid method discussed above is to
locally and instantaneously limit the eddy viscosity of a given LES
model by the value of its corresponding RANS model in order to
circumvent the problems of classical LES models in the coarse grid
limit (see the discussion in Section 2.3). Since many more SGS
models are or can be derived from RANS closures, a generalization
is obvious, i.e. a hybrid method can be constructed as

fhybrid
¼ minffLES;fRANS

g, (36)

where f is a modeling quantity for which the RANS value
constitutes a maximum, such as nt or a length-scale ‘ in the
model. The difference w.r.t. DES in Section 4.1 is that, for DES, ‘LES

is limited by ‘RANS in the dissipation term of the model transport
equation whereas, here, the limiting quantity is either the
model term itself or a characteristic scale directly used in the
constitutive relation of the model.

4.4. Limited numerical scales (LNS)

Inspired by the original proposal of Speziale, Batten et al.
[103,104] developed a variant of this approach which they called
limited numerical scales (LNS) setting

tmodel
ij ¼ atRANS

ij (37)

and using a cubic K–e model for tRANS
ij . Aware of the consistency

issue discussed in Section 3.1.2, the authors proposed to use tmodel
ij
instead of tRANS
ij in the transport equations for K and e. As a

consequence, these quantities become Kt and et since they are
determined as solutions of some sort of subgrid-scale transport
equations. Hence tRANS

ij computed with Kt and et is turned into a
subgrid stress model. Damping this model again results in a
‘‘double-damped’’ tmodel

ij . To compensate for this, Batten et al.
adjusted the contribution function significantly. They termed it
latency factor and used

a ¼
min nLES

t ; nRANS
t


 �
nRANS

t

hence 0p
nLES

t

nRANS
t

pap1. (38)

Here, nRANS
t is the RANS equivalent eddy viscosity obtained by

using Kt and et in the original RANS definition, while nLES
t is the

eddy viscosity of an LES model of choice. In other words, for
sufficiently fine grids, tRANS

ij is scaled down to LES-like values.
Batten et al. selected the Smagorinsky model with

nLES
t ¼ CSD

2S, (39)

where CS ¼ 0:05 and

D ¼ 2 maxfDx;Dy;Dzg. (40)

If tRANS
ij were to be a linear eddy viscosity model, then inserting

(38) in (37) and comparing with (36) reveals that LNS would turn
FSM into a RANS-limited LES as discussed in Section 4.3. The use
of a nonlinear RANS-model, however, leads to modifications in
LES-mode, but this characteristic is retained.

LNS still fulfills all the demands on a unified model put forth by
Speziale and was applied to an array of test cases with fair
success. A particular example is the flow over periodic hills
introduced above. On a coarse grid of approximately 600,000 cells
adequate results were obtained with a somewhat too long
reattachment length [105]. The results were better than for a
pure RANS on the two-dimensional version of the same grid.
Apart from the consistency issue, which is less traceable here, the
remarks made on FSM in Section 3.1 and on the RANS-limited LES
still hold.
5. Segregated modeling

Segregated modeling for hybrid LES/RANS methods is based on
decomposing the entire domain before starting the simulation
into clearly identifiable regions for RANS and LES. The connection
between the distinct zones during the simulation is established
via explicit coupling of the solution, i.e. velocities and pressure, at
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the interfaces. A sketch of such a situation is shown in Fig. 5.
This issue has presumably been described in its full generality
first by Bertoglio and co-workers [106–108]. Note that for a true
LES/RANS hybrid method the coupling has to be two-way with
exchange in both directions. Otherwise, the problem is reduced to
a standard LES setup, where the RANS solution can be computed a

priori and only serves to provide better boundary conditions,
like in a fairly successful simulation of the flow over the Ahmed
body [109].

The aim of segregated modeling is to compute all models in
their regime of validity: steady RANS for flows with stationary
statistics and unsteady LES with high resolution where it is
needed. Therefore one can choose the best suited method for each
subdomain without considering their compatibility and without
fear of inconsistencies in their use. Furthermore, any gray zone
where the model is left alone with generating fluctuations in some
transition process is avoided. The price to pay is the need for
comparatively complex coupling conditions. For block-structured
solvers, however, the routines for data exchange required anyway
facilitate a straightforward implementation. Inappropriate
coupling conditions lead to contamination of the results in the
LES or RANS subdomains. Depending on the type of the interface
illustrated in Fig. 5, the requirements on the coupling conditions
differ as discussed below.

5.1. Inflow coupling

At inflow-type interfaces, mass, momentum, energy, flow
structures, etc. are convected from a RANS region into the
subdomain treated by LES. The mean values are provided by the
RANS calculation and coupled to the explicitly averaged LES data.
If very strong instabilities exist inside the LES domain and the
upstream unsteadiness has only little impact on the downstream
flow, this might already suffice. An example could be the
supersonic baseflow discussed in Section 3.1.3 above. In all other
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whereas the red triangles indicate the achieved one. Plots reproduced from [111].
cases, the LES requires the provision of fluctuations at the
interface in order to avoid an artificial transition zone in the LES
subdomain. To this end, methods applicable for pure LES can be
used. Consequently, only a brief overview is given here, referring
the reader to the literature for more details, e.g. the articles in the
special edition in [110] on this topic or the review in [46].

Two classes of unsteady inflow data can be distinguished: real
unsteady flow structures and artificial fluctuations, where the
latter can be seen as a model of the first. Real flow structures can
be provided in several ways: specifically designed precursor
simulations or databases for similar flows with additional
adjustment. Synthetic turbulent fluctuations can be obtained
by various strategies: proper orthogonal decomposition (POD)
modes, Fourier modes, digital filters, random vortices, stochastic
forcing, etc. Imposing fluctuations as close as possible to those
present in the real flow is crucial. Otherwise they will be damped
rapidly, hence failing the purpose of the method.

An example of a synthetic inflow data generation used for the
periodic hill flow is given in Fig. 20. A periodic boundary condition
providing physical flow structures is compared with random
white noise, a vortex method presented by Mathey et al. [108] and
a modification of the vortex method implemented in collaboration
with the first author [111]. Random noise yields too long a
reattachment length. The original vortex method and more so the
modified vortex method improve the situation.

The application of a database technique for the generation
of unsteady fluctuations at a RANS/LES boundary is illustrated in
Fig. 21 for the example of an asymmetric diffuser. The embedded
LES is conducted to resolve the region of separated flow whereas
two-dimensional RANS is performed in the surrounding domain.

5.2. Outflow coupling

For any RANS zone downstream of an LES zone the primary
task of a hybrid LES/RANS coupling at an outflow-type interface is
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to propagate mean flow information upstream. At the same time,
for flows with stationary statistics, the LES should provide only
mean flow data to the RANS domain. Since the LES delivers
unsteady data, the interface has to allow for the fluctuations to
leave the LES domain without reflections. Several techniques for
such a two-way coupling fulfilling these demands have been
proposed in the literature.
Fig. 21. Application of a database technique for the generation of fluctuations at an

RANS/LES boundary; simulation of an air intake (courtesy of I. Mary, ONERA,

Châtillon). (a) Instantaneous contours of Q; (b) setup of embedded LES: 2D RANS

zone (red) and 3D LES zone (green).
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5.2.1. Enrichment

Quéméré and Sagaut [49] developed a strategy called enrich-
ment to allow for unsteady fluctuations to leave the LES domain.
This technique scales fluctuations from inside the LES domain and
adds these to mean values obtained from the RANS domain. The
mean flow is directly coupled. The so-formed total flow quantity is
copied to ghost cells at the LES-outflow boundary. A calibration
constant is needed to determine the amount of scaling for the
fluctuations. A modified version of enrichment was used at the
downstream end of the air intake simulation shown in Fig. 21.

Enrichment has been fairly successful for compressible flows
where pressure coupling needs not to be considered. There is
some sensitivity to the grid stretching at the boundary and the
numerical method employed. The calibration constant must be
close to but in most cases smaller than 1. Otherwise, the method
will cause reflections or the solution diverges. These shortcomings
can be explained in the framework of the method discussed in
Section 5.2.3 [112].
5.2.2. Using a controller in an overlap zone

Coupling of incompressible LES with compressible RANS was
performed by Schlüter et al. [113]. At the inlet of an overlapping
RANS domain, they prescribed the time and spatial averaged
velocities and the resolved kinetic energy of the fluctuations from
a specified plane inside the LES domain. The mean velocity field of
the LES in the overlap region was driven toward the RANS target
values using a simple controller and volume forces in the
momentum equations. A convective condition was employed for
the velocities at the outflow boundary of the LES. The pressure
was determined by the solution of the pressure Poisson equation.

The method of Schlüter et al. has two main ingredients: a
standard convective outflow condition for LES to minimize
reflections and the coupling of the RANS flow field through a
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volume force field. This force essentially functions as a weak one-
way upstream pressure coupling. Calibration of two constants is
required: the length of the overlap region and a constant in the
controller algorithm. Due to the overlap, this approach blurs the
interface.

5.2.3. Convective velocity coupling

A general method for downstream coupling with a sharp
interface was devised by von Terzi and Fröhlich [114,115]. For the
velocity coupling, the explicitly Reynolds-averaged velocity field
of the LES domain was imposed as a Dirichlet condition for the
RANS inflow boundary. For the LES-outflow boundary, a discrete
analog of a convective condition was prescribed for the velocity
perturbation. This proposed velocity coupling is general and
contains the enrichment strategy [49] as the limiting case of an
infinite convection speed of the fluctuations [115]. No constant
needs to be calibrated, since the local mean velocity at the
interface can be used as the convection velocity for the
fluctuations. A comparison of enrichment with the convective
coupling can be found in [112].

For incompressible flows, the pressure coupling needs to be
consistent with the elliptic nature of the Poisson equation but
also with the chosen velocity coupling [115]. Furthermore, the
pressure variable in incompressible solvers is often modified by
the trace of model terms. If the model switches from LES to RANS,
this changes the level of the pressure variable accordingly. This
situation can be dealt with by completely decoupling the pressure
between the subdomains, as if they were independent, and only
coupling the velocities. As a consequence global mass conserva-
tion across the interface needs to be enforced explicitly so that the
pressure solver converges in the subdomains [114].
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Fig. 23. Convective outflow coupling for the flow over periodic hills with the LES-to
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5.2.4. Sample applications

The performance of different variations proposed in [115] were
scrutinized for turbulent channel flow ðRet ¼ 395Þ by comparison
with DNS data from [116]. This flow is fully developed so that
any modification in the streamwise direction results from changes
in modeling. Fig. 22a and b show statistical data in the wall-
normal direction for the reference LES, for an LES without RANS
coupling and at the interface plane for the hybrid method. The
two lower plots of the figure illustrate that indeed instantaneous
velocity and pressure fluctuations can leave the domain without
reflections.

The channel flow is a sensitive but uncritical test case, as the
flow is developed and therefore no downstream information is
really needed for the upstream LES. This is different in the flow
over periodic hills. For this case, the simulation is again divided
into the three distinct zones used for the channel flow simulation
(Fig. 23). The first zone is computed with LES using wall functions
and periodic boundary conditions in the downstream direction
serving as inflow generator for the second zone. 200� 64� 92
interior cells were employed in the downstream, wall-normal and
lateral direction, respectively. For the second zone, also LES was
performed using the same resolution and wall-function as in
zone 1, however, before the crest of the next hill is reached, the
simulation switches from LES to RANS. At the outflow of the RANS
domain, Neumann boundary conditions were applied. The posi-
tion of the LES-to-RANS interface is challenging, but were selected
on purpose for this test. Indeed, a simulation without the RANS
zone using a standard convective outflow condition fails.

Typical results are displayed in Fig. 23. The instantaneous
streamwise velocity contours show that the RANS flow field is
completely steady. No reflections can be seen in the LES domain.
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The mean streamlines reveal that for the two-dimensional RANS
solution reattachment occurs far too late, consistent with RANS
results in the literature [4]. On the other hand, the LES in zone 2
delivers results similar to the reference solution of zone 1, albeit
with a slightly longer recirculation region. Both reattachment
lengths of 4.1 h and 4.3 h for zones 1 and 2, respectively, are
acceptably close to the reference values of 4.6–4.7 h in [79]
obtained with a substantially finer grid.

5.3. Tangential coupling

Subdomain boundaries more or less aligned with streamlines
of the mean flow are called tangential interfaces. If these interfaces
are close to walls with the RANS region between the LES domain
and the wall, the problem is analogous to near-wall modeling of
LES using the two-layer approach for unified modeling Section 4.2.
With segregated modeling, however, the solution itself is coupled,
i.e. the averaged and resolved velocity fields of the RANS and LES
zones, respectively. Hence, the velocities are discontinuous over
the interface, since only mean values are coupled. Fluctuations
need to be provided separately. Tangential coupling with
segregated modeling has so far been proposed only in [49] using
the enrichment strategy discussed in Section 5.2.1. In this
reference, the method was applied to turbulent channel flow
and the flow over a bluff body.

5.4. Assessment

With a segregated approach, turbulence models are operated
under conditions they were intended for. This avoids issues like
lack of scale separation, gray zones and MSD, or double
accounting as encountered for many other examples. On the
other hand, segregated modeling requires the user to define a

priori where LES and where RANS is to be performed. In particular
for incompressible flows, coupling conditions at the interfaces
have to be designed carefully due to the global nature of pressure
in order not to spoil the simulation. The development of smart
interfaces is challenging and not completed in the literature.
6. Second generation URANS models

RANS models are models only involving physical length-scales.
LES models, in contrast, have been classified above as models
containing, explicitly or implicitly, a length scale related to the
numerical grid. This length scale determines the size of resolved
fluctuations. Very recently, models have emerged which aim at
resolving a substantial part of the turbulent fluctuations but do
not contain such an explicit dependency on the computational
grid. Consequently, we term these models second generation

URANS models (2G-URANS). The essential characteristics, addi-
tional to the independence from the grid scale, is that the model
contains a term sensing the amount of resolved fluctuations
(temporal or spatial). This is in contrast to the classical URANS
procedure described in Section 2.1.

6.1. The PANS model

6.1.1. Description of the method

The partially filtered Navier–Stokes (PANS) model3 proposed
by Girimaji [117], follows the idea put forth in Section 3.1 that
unified models can be derived from existing RANS models by the
3 This should not be confused with phase-averaged Navier–Stokes calculations

occasionally also abbreviated as PANS.
introduction of some damping of model terms. The purpose of the
damping is to adjust the given RANS model to better cope with
situations where part of the turbulence is resolved. In contrast
to the methods discussed in Section 3.1, no explicit damping
function is devised here. Instead, for each characteristic scale of
the turbulence closure, a constant damping ratio is prescribed
prior to a given simulation. For the K–e model this reads

f K ¼
Kt

K
and f e ¼

et
e with 0pf Kpf ep1, (41)

where Kt and et represent the amount of unresolved kinetic
energy and dissipation rate, respectively. In other words, the user
decides a priori how much of the kinetic energy and dissipation
rate is to be modeled. Note that the same ratio is then enforced
everywhere in the flow field at any instant in time. The resulting
scaling of nt in (10) becomes

nt ¼ Cmt
K2
t
et
¼ Cm

f 2
K

f e

K2

e
, (42)

where Cmt ¼ Cm was chosen by the author based on a fixed-point
analysis of the RANS and PANS equations. The term f 2

K=f e
constitutes the effective damping constant for the RANS model.
For consistency, the transport equations of K and e turn into
equations for Kt and et. These equations include the damping
ratios, but also an additional term that requires modeling. With
the specific models proposed in [117], the Kt and et equations
become formally identical to the original RANS closure. Only
the model constants are replaced by parameters depending
on f K and f e.

6.1.2. Sample applications

So far only preliminary results have been published for
turbulent flows in a lid driven cavity and over a cylinder. These
are more of a qualitative nature and are hence not discussed here.

6.1.3. Assessment

A main advantage of the PANS model is its easy implementa-
tion into an existing RANS solver. Only coefficients need to be
changed depending on the choices of f K and f e. Furthermore, no
explicit filtering is required, i.e. the filter is implied in the model
and may actually vary in the computational domain since the
velocity field is decomposed based on a desired amount of
resolved kinetic energy rather than on a separation of scales using
a filter with a certain width. Note, however, that numerical
methods for standard RANS solvers are usually dissipative,
particularly in time, whereas here temporal accuracy is desired
depending on how much of the kinetic energy in the flow is to be
resolved.

An important feature of the PANS approach is that it contains
no explicit dependency on the grid-scale, i.e. it contains no
elements qualifying as ‘‘LES’’ according to the definition in Section
2.4. Hence, it should be rather viewed as transforming an existing
RANS model into a URANS model. The lack of this dependency,
however, could be viewed as a drawback of the method for general
applications: In hybrid LES/RANS methods, the user can choose a
grid resolution deemed appropriate to resolve flow structures of
interest in selected regions of the flow field. The SGS model then
adjusts its level automatically based on the chosen local
resolution. This is not possible here. The choice of f K and f e
defines a ‘‘constant resolution’’ everywhere in the flow field.
Moreover, an appropriate choice to resolve a given large-scale
flow feature of interest is not obvious, since energy and
dissipation contents have to be prescribed and not spatial extent.
In general, f eXf K , since the dissipative scales are the smallest in a
turbulent flow and are hence likely to require more modeling.
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For the URANS limit, f Ko1 and f e ¼ 1 and, for the LES limit, f K ¼

f e � 1 may be starting points for preliminary simulations.
Even though issues concerning wall-modeling, appropriate

models for the additional terms in the transport equations for Kt
and et and, most of all, the specification of f K and f e remain, the
approach seems interesting, but requires substantially more
testing.

6.2. Scale-adaptive simulation (SAS)

6.2.1. Description of the method

The scale-adaptive simulation (SAS) approach developed by
Menter and co-workers resulted from revisiting the K � KL

model of Rotta [118] where K is the turbulent kinetic energy
and L the traditional notation for the macro-length of turbulence.
In [119], the idea is described considering the boundary-layer
formulation of the model with the velocity gradient in the
y-direction. The exact transport equation for KL then contains a
sink term

�
3

16

qhuiðxÞ
qy

Z 1
�1

R21 dry �
3

16

Z 1
�1

qhuiðxþ eyryÞ

qy
R12 dry, (43)

where x is a given point, ry the distance, ey the unit vector in the
y-direction, and Rijðx; yÞ ¼ hu

0
iðxÞ;u

0
iðxþ yÞi the two-point correla-

tion of the velocity fluctuations. A Taylor series of the second term
in (43) yields

qhui
qy

Z
R12 dry þ

q2
hui

qy2

Z
R12ry dry

þ
1

2

q3
hui

qy3

Z
R12r2

y dry þ � � � . (44)

It is then natural to model the sum of the first term in (44) and the
first term in (43) together as hu0v0i~z1Lqhui=qy, where ~z1 is a model
constant. In isotropic turbulence, the two-point correlation R12 is
symmetric w.r.t. y ¼ 0. The integral of the second term in (44)
hence vanishes in this case. For that reason, Rotta dropped this
term for his model [118]. The third term on the other hand is non-
zero and was modeled by Rotta as

hu0v0i~z2L3 q
3
hui

qy3
, (45)

where ~z2 is a model constant. Since the third derivative is
numerically delicate to evaluate and somewhat strange to use for
modeling without retaining the second derivative, in actual
implementations term (45) was never included. Under these
conditions, however, the K � KL model looses its particularity and
becomes equivalent to other two-equation models.

Menter et al. [120] recognized that the integral of R12 is non-
zero in non-homogeneous flows which, after all, constitute the
area of application for the model. They proposed two models for
this term:
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q2
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R12ry dry � z2hu
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					L2, (46)
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				, (47)

with k being the von Kármán constant and z2 a model parameter.
These two choices were blended by replacing z2 in (47) with

ẑ2 ¼ z2 max CSAS;
1

k
qL

qy

				
				

� 

. (48)

In [119], using transport equations for K and F ¼
ffiffiffiffi
K
p

L,
the authors showed that the term proportional to the second
derivative introduces another length-scale in addition to L,
the von Kármán length-scale

Lvk ¼ k qU=qy

q2U=qy2

					
					. (49)

The computed length-scale L ¼ F=
ffiffiffiffi
K
p

then differs according to
which of the terms in (48) is larger. If CSAS is smaller than the
other contribution, L is proportional to

ffiffiffiffiffiffiffiffiffiffi
dLvK

p
, where d is the

thickness of the shear layer. In the other case, L is proportional to
LvK . This was demonstrated by considering the artificial flow field
hui ¼ U0 sinð2py=lÞ, v ¼ w ¼ 0 as depicted in Fig. 24a and
imposing K ¼ F ¼ 0 on the boundaries. Two cases were consid-
ered, one with the domain y ¼ 0 . . .4l, the other with y ¼ 0 . . .8l.
The right plot in this figure shows the computed length scale L as a
function of y. If CSAS ¼ 0, L scales with the square root of d, which
is d ¼ 4l in one case and d ¼ 8l in the other case. With CSAS ¼

0:54 (obtained by calibration with unsteady isotropic turbulence)
the length scale is substantially smaller and independent of the
layer thickness, i.e. dependent only on LvK . Fig. 24 illustrates the
reduction of the turbulent length-scale, and hence the eddy
viscosity, through the additional second-derivative term. It was
found that in practical computations the limiting in (48) is not
needed for the model to switch to its unsteady mode, since in that
case the jqL=qyj-term turned out to be smaller than CSAS. This
switch hence was dropped in the variant of the model used to date
[121] effectively resulting in a reduction of the coefficient z2 to
attain the desired capability of the model.

So far the notation huii was used in the equations to indicate
the statistical average and K, L, etc. were assumed to be statistical
quantities. The purpose of the SAS model, however, is to be run in
unsteady mode when appropriate. In that case, all variables are
fluctuating instantaneous quantities resolving a sizable part of the
total turbulent motion. It is hence suitable to reflect this by the
notation. In the following, variables without brackets are used
defining

Ui ¼
huii if the model runs in steady mode;

ui if the model runs in unsteady mode

(
(50)

and similarly for all other quantities.
The next step is to generalize the model for arbitrary

directions of shear. Working with F ¼
ffiffiffiffi
K
p

L instead of KL used in
the Rotta model is convenient since this quantity corresponds to
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the eddy viscosity via

nt ¼
mt

r ¼ c1=4
m F. (51)

This results in the following model transport equations, written in
the most current form in use to date [122]:

qðrKÞ

qt
þ
qðrUjKÞ

qxj
¼ PK � c3=4

m rK3=2

L
þ

q
qxj

mt

sK

qK

qxj

� �
, (52)

qðrFÞ
qt
þ
qðrUjFÞ

qxj
¼
F
K

PK z1 � z2
L

LvK

� �2
 !

� z3rK þ
q
qxj

mt

sF

qF
qxj

� �
,

(53)

LvK ¼ k jU
0
j

jU00j
; jU0j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qUi

qxj

qUi

qxj

s
; jU00j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2Ui

qxjqxj

q2Ui

qxkqxk

s
, (54)

PK ¼ mtS
2; S ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2SijSij

q
; Sij ¼

1

2

qUi

qxj
þ
qUj

qxi

� �
. (55)

The values of the constants are cm ¼ 0:09, k ¼ 0:41, z1 ¼ 0:8,
z2 ¼ 1:47, z3 ¼ 0:0288, sK ¼ sF ¼ 2=3. The model is now able to
switch from the steady RANS mode to an unsteady SAS mode
where the computed length-scale is reduced yielding a lower
eddy viscosity which in turn allows fluctuations to arise and to be
sustained.

The above model was also converted into a modification of the
widely used SST model proposed in [62]. The SAS approach is then
rephrased as an additional source term in the o-equation with
some minor changes in order to preserve the RANS behavior of the
SST model for boundary layer flows [123]. The most current
version of this source term then reads [121]:

FSAS ¼ max rz2kS2 L

LvK

� �2
(

� C
2rK

sF
max

1

o2

qo
qxj

qo
qxj

;
1

K2

qK

qxj

qK

qxj

� �
;0

)
(56)

with z2 ¼ 3:51 and C ¼ 2. Different numerical schemes are used in
both modes as proposed for DES by Strelets [72]: an upwind
scheme in RANS mode for stability reasons and second-order
accurate central differences in SAS mode to avoid numerical
damping.

So far, the model does not contain any parameter related to the
grid used for solving the transport equations. Instead, a second
physical length-scale is introduced to reduce the eddy viscosity.
This is why the approach is a 2G-URANS model. In the unstable
mode, the method is able to produce reasonable spectra for
isotropic turbulence [119]. The way this takes place, however, is
fairly intricate since several terms in the equations interact,
further complicated by the switch in the numerical scheme.

While the model, in principle, can switch to an unsteady mode,
it is understood that fluctuations in the SAS mode can only be
sustained for frequencies that are sufficiently resolved by the
computational grid and the time discretization. It was hence
advocated that near the cutoff wavenumber of the grid some
mechanism should be introduced which damps the fluctuations
near the cutoff frequency [124]. Such a mechanism introduces a
lower bound for the eddy viscosity ensuring that it does not drop
below levels an SGS model would yield. This, however, requires
the step size of the grid to appear, either explicitly via a true SGS
model, or implicitly by numerical diffusion (like MILES for LES
[44]). In other words, an LES component is incorporated into the
model, but it is not the dominant characteristic of the approach.
Furthermore, in the limit of vanishing step size the method does
not revert to DNS. It still provides an eddy viscosity and merely
becomes a highly resolved SAS. Further variants of the SAS
model were proposed in the sequel, such as a one-equation
variant, solving only an equation for F ¼

ffiffiffiffi
K
p

L and replacing the
transport equation for K by the algebraic expression ntS=

ffiffiffiffiffi
cm
p
¼

c�1=4
m SF [122].

To conclude this section, the definition of SAS is provided to
distinguish the approach from other methods. Rephrased after
[124] it reads:
1.
 The model contains two length scales, the classical one related
to the first derivative of the resolved velocity, and a second one
related to higher derivatives of the resolved velocity.
2.
 (a) The model provides RANS performance in stable flow
regions (without explicit grid or time-step dependency).

(b) The model allows the break-up of large unsteady struc-
tures into a turbulent spectrum (without explicit grid or
time-step dependency).

(c) The model provides proper damping of resolved turbulence
at the resolution limit of the grid. This requires some
information about the step size of the grid, either explicitly

or implicitly.
6.2.2. Sample applications and assessment

Menter and co-workers applied the SAS model and variants to
several configurations ranging from isotropic turbulence for
calibration [119] to turbulent flows with heat transfer [122] and
reactive flows [124]. They also computed the flow over periodic
hills discussed above using roughly 2.5 million cells. Observe that
with this amount of grid points standard LES can yield very
reasonable results [80]. Fig. 25 shows profiles of the mean
streamwise velocity and the turbulent kinetic energy for two
different sizes of the time step, Dt ¼ 0:05Ub=h and 0:2Ub=h, where
Ub is the bulk velocity over the crest of the hills. Both simulations
exhibit good agreement in the velocity profiles compared to the
reference LES, but for K the simulation with a larger time step
deviates from the reference data.

In Fig. 26, a vortex identification criterion is used to
demonstrate that SAS can indeed resolve unsteady flow struc-
tures, but again the temporal resolution has a marked impact on
the results. That this is beyond a mere increase in artificial
damping due to the numerical method is corroborated by the
coloring of the contours as a measure for the ratio of turbulent to
molecular viscosity. An increase for the coarse resolution can be
discerned that is in contrast to how a traditional LES would react
to insufficient temporal resolution. For LES, an increase in
temporal damping by large time steps would decrease resolved
flow gradients but also incur a concomitant decrease of the SGS
viscosity. For SAS, however, the increase in smoothness of the
solution leads to larger values of the eddy viscosity equivalence F.
The mechanism for this can be found in (53). Since a smoother
resolved velocity field yields a larger von Kármán length scale, the
ratio of L over LvK decreases and hence the production of F
increases. On the other hand a smoother resolved velocity field
also decreases the production of K in (55) which feeds back on the
production and dissipation of F in intricate ways. The resulting
net increase of the eddy viscosity can drive SAS to its steady mode
in case of coarse resolution. This can be seen as a safeguard in
simulations of complex flows, but it also bears difficulties and
may incur higher resolution requirements than other hybrid
methods in order to obtain unsteady results. An indication for the
latter will be discussed in the following:

Kniesner et al. [90] converted the model into a K–e variant and
computed also the flow over periodic hills, but on a coarser grid of
only 500,000 cells, almost an order of magnitude less than the
reference LES in [79]. The results with their version of SAS
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concerning the mean profile and the resolved turbulent kinetic
energy, however, were not as good as those obtained with the
interfacing hybrid method proposed in the same paper [90].
Davidson [125] used SAS to compute the developing flow in a
channel, the flow in an asymmetric diffusor and the flow over a
three-dimensional hill comparing the results to SST–URANS
simulations of the same flow. For the diffusor the model did not
run in any of the two limits—SAS or RANS—but somewhere in
between, yielding poorer results than SST–URANS. The hill flow
was poorly predicted by both options, while hybrid LES/RANS of
the same author [126] performed better. From such examples and
the channel flow simulations in the original SAS proposal [120], it
seems that, for flows where traditional URANS methods yield
steady flow predictions, the driving force pushing SAS to its
unsteady mode is missing. This may well be due to the
mechanism for increasing F described above. Hence, such cases
constitute a severe challenge for SAS and the method should not
be applied when flow instabilities are weak.

Since the SAS method is very young it is too early to
definitively conclude about its capacities. Its big advantage is
the simplicity with which it can be implemented into an existing
RANS solver, i.e. the insertion of a single additional term into a
model transport equation, such as (56). Furthermore, the user is
not requested to specify model parameters or to control them
through the choice of the computational grid which is an
immense advantage in case of industrial applications. The switch
from the steady to the unsteady mode is triggered by the model
itself and is not sufficiently understood yet. For resolutions too
coarse to resolve the fluctuations the method tends to switch to a
steady RANS solution. The resolution requirements of SAS
certainly depend on the respective case to which the method is
applied and the desired type of results. As with other methods,
under-resolution in intermediate regimes bears uncertainty.
Comparison of effort and performance of SAS w.r.t. other hybrid
methods remains to be quantified.

6.3. Layering 2G-URANS and LES

6.3.1. Description of the method

Medic et al. [127] proposed a near-wall model for LES of
attached flows which aims at avoiding the MSD addressed in
Section 3.2.3. Starting from a RANS model, the idea is to subtract
from this model the turbulent stresses or the equivalent model
contribution that is already accounted for by the resolved
fluctuations. This was performed for an eddy-viscosity model
leading to

nblended
t ¼ nRANS

t � nresolved
t

¼ nRANS
t þ hu0v0i

qhui
qy

�
, (57)

where h� � �i represents an explicit average of the computed
solution in directions of homogeneous statistics and/or in time,
while u and v are the resolved streamwise and wall-normal
velocities, respectively. Eq. (57) is used instead of nLES

t for yþ, based
on the average flow, below a specified value, e.g. ðyþÞ� ¼ 50, while
for larger distances, the unmodified LES model nLES

t is employed.
This constitutes a hard interface between layered 2G-URANS and
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LES. In addition to (57) the resulting eddy viscosity is clipped at
the (instantaneous) value obtained from the SGS-model:

nt ¼ maxfnblended
t ; nLES

t g. (58)

This results in a blending between the LES and RANS limits since

nLES
t pntpnRANS

t (59)

or, equivalently,

0p
nLES

t

nRANS
t

p
nt

nRANS
t

p1, (60)

with the ratio nt=nRANS
t being a measure of the amount of blending.

This factor approaches one if only little of the turbulent
stresses is resolved, whereas the model switches itself off if the
simulation is well resolved. As RANS closures, the K–o model
and the Spalart–Allmaras model were tested, while the wall-
adapted local eddy viscosity (WALE) model or the dynamic
Smagorinsky model were used as SGS models. Other variants
are easily conceived.

For very simple flows, nRANS
t can be obtained via a database

such that the hybrid method reduces to a one-way coupling
similar to a wall function. For more complex flows, the RANS
solution is to be computed together with the LES in a coupled
fashion: the resolved velocity is explicitly averaged to provide the
mean velocities and strain rates in the convective and production
terms of the transport equations employed in the RANS model
which in turn is used to determine nRANS

t . In contrast to other
hybrid models, like DES, the RANS model term is obtained from
the averaged, not the instantaneous solution. This reduces the
eddy viscosity as the gradients of the instantaneous solution are
larger.

The model according to (57) is a RANS-type model as it does
not involve the grid scale. In fact, it is a 2G-URANS model as it
accounts for the resolved fluctuations when run in unsteady
mode. If no fluctuations are introduced, the solution is steady and
equal to the classical RANS solution. If fluctuations are present
they reduce the eddy viscosity and hence the damping so that
unsteadiness is enhanced compared to the traditional URANS
approach described in Section 2.1.

6.3.2. First applications

Preliminary results for turbulent channel flow at Ret ¼ 395
and 950 were presented in [127,128]. Compared to an unsteady
simulation employing nRANS

t , the blended model (57) yields
increased resolved fluctuations.
Fig. 27 reports mean values from a computation at the higher
Reynolds number using the full algorithm. LES and a K–o-based
RANS calculation were performed in a coupled fashion up to
ðyþÞ� ¼ 50. The figure shows the improvement of the RANS-
modified LES compared to a pure LES using the WALE subgrid-
scale model, a model accounting for the reduction of the eddy
viscosity near the wall without the need of van Driest damping.
Part (b) of the figure illustrates the increase in nt generated by
the blending with the RANS viscosity. The Reynolds stresses
(not reproduced here) only exhibit a sizable difference in hu0u0i of
which the overshoot w.r.t. the DNS data are somewhat reduced.

6.3.3. Assessment

A drawback of the method is the need for explicit averaging to
determine the correction term in (57). It was performed in
homogeneous directions in the calculation discussed above, but
could also be replaced by averaging in time. On the other hand,
the approach avoids double accounting for fluctuations by
subtracting the resolved motion. Computations of channel flow
with the coupled model were also undertaken in collaboration
with the present authors by Brandt and Hellsten [129] using the
K �o RANS model and the Smagorinsky SGS model. In these
simulations, substantial sensitivity of the result w.r.t. details of the
simulation was observed (SGS model constant, position of inter-
face, averaging procedure). It was demonstrated that the steep
gradient in nt around y� introduced by the blending yields a jump
in dhui=dy which in turn influences the production term of the
underlying RANS model. Simulations of the periodic hill config-
uration showed less sensitivity due to the more complex nature of
the flow. Further studies are clearly needed for a final assessment
of this approach.
7. Concluding remarks

In the previous sections, a large number of methods was
discussed combining LES and RANS features. The presentation was
guided by the classification proposed in Section 2 which is based
on distinguishing segregated models from unified models and
interfacing from blending for deriving the latter. According to their
variability in time, interfaces were furthermore classified as either
soft or hard. Finally, the term 2G-URANS models was introduced
to emphasize the difference of SAS and PANS from traditional
URANS models, but also to separate them from LES or the hybrid
LES/RANS techniques discussed before. Together with the tradi-
tional approaches URANS, LES and DNS, these methods constitute
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eddy-resolving approaches to the simulation of turbulent flows.
The full picture, with the classification scheme proposed here, is
visualized in Fig. 28.

Throughout the discussion of the models, their respective
features were commented, naming advantages and difficulties so
that this is not reiterated here. Certain issues have been
repeatedly addressed such as the difficulty of a continuous
transition between LES and RANS. In this respect, the direction
of transfer of turbulent kinetic energy in space within the flow is
certainly an aspect to be taken into account.

Other issues could only be mentioned marginally here, such as
the influence of the numerical discretization scheme, which may
however be of considerable practical importance. In general,
numerical methods optimized for the RANS limit are poor choices
for DNS and vice versa. For classical LES, as for DNS, low-
dissipation schemes are preferred, whereas for RANS numerical
stability is paramount. In between, the choices and trade offs are
considerably more difficult to make.

Finally, the issue of how actually to compare a computed
hybrid LES/RANS solution to experimental data merits considera-
tion. Generally, one has to add modeled and resolved contribu-
tions, although this may be delicate with certain models. The
issue of grid refinement studies and convergence of models in the
limit of vanishing grid size or in other limits could not be
elaborated for lack of space here.

Hybrid LES/RANS methods, or other methods with a larger
contribution of modeled turbulent fluctuations that are still able
to resolve the largest unsteady flow structures, are a very active
field of research. Extensive testing of the various approaches is
needed to strengthen confidence in these methods and to
delineate their respective range of applicability.
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J. Fröhlich, D. von Terzi / Progress in Aerospace Sciences 44 (2008) 349–377376
[15] Wang M, Moin P. Computation of trailing-edge flow and noise using large-
eddy simulation. AIAA J 2000;38:2201–9.

[16] Wang M, Moin P. Dynamic wall modeling for large-eddy simulation of
complex turbulent flows. Phys Fluids 2002;14:2043–51.

[17] Cabot W. Large eddy simulations with wall models, In: Annual research
briefs—1995, Center for Turbulence Research, Stanford University; 1995.

[18] Balaras E, Benocci C, Piomelli U. Finite-difference computations of high
Reynolds number flows using the dynamic subgrid-scale model. Theoret
Comput Fluid Dyn 1995;7:207–16.

[19] Piomelli U, Chasnov JR. Large-eddy simulations: theory and applications. In:
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bodies. In: Friedrich R, Métais O, editors. Direct and large eddy simulation V.
Dordrecht: Kluwer Academic Publishers; 2004.

[77] Nikitin NV, Nicoud F, Wasisto B, Squires KD, Spalart PR. An approach to wall
modelling in large-eddy simulations. Phys Fluids 2000;12:1629–32.
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Wall treatment in LES by RANS models: method development and
application to aerodynamic flows and swirl combustors. ERCOFTAC Bull
2007;72:33–40.

[91] Cabot W, Moin P. Approximate wall boundary conditions in the large-eddy
simulation of high Reynolds number flow. Flow Turbulence Combustion
1999;63:269–91.

[92] Piomelli U, Balaras E. Wall-layer models for large-eddy simulation. Ann Rev
Fluid Mech 2002;34:349–74.

[93] Balaras E, Benocci C, Piomelli U. Two-layer approximate boundary condi-
tions for large-eddy simulations. AIAA J 1996;34:1111–9.

[94] Davidson L, Peng SH. Hybrid LES–RANS modelling: a one-equation sgs model
combined with a k-o model for predicting recirculating flows. Int J Numer
Methods Fluids 2003;43(9):1003–18.
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